逍遥右脑 2015-04-23 12:30
23、(2013•遂宁)2013年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震.某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?
考点:分式方程的应用.
分析:设该厂原来每天生产x顶帐篷,提高效率后每天生产1.5x顶帐篷,根据原来的时间比实际多4天建立方程求出其解即可.
解答:解:设该厂原来每天生产x顶帐篷,提高效率后每天生产1.5x顶帐篷,据题意得:
,
解得:x=100.
经检验,x=100是原分式方程的解.
答:该厂原来每天生产100顶帐篷.
点评:本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,解答时根据生产过程中前后的时间关系建立方程是关键.
24、(2013凉山州)某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变).
(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?
(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.
考点:反比例函数的应用;分式方程的应用.
分析:(1)根据每天运量×天数=总运量即可列出函数关系式;
(2)根据“实际每天比原计划少运20%,则推迟1天完成任务”列出方程求解即可.
解答:解:(1)∵每天运量×天数=总运量
∴nt=4000
∴n= ;
(2)设原计划x天完成,根据题意得:
解得:x=4
经检验:x=4是原方程的根,
答:原计划4天完成.
点评:本题考查了反比例函数的应用及分式方程的应用,解题的关键是找到题目中的等量关系.
25、(2013•新疆)佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.
(1)求第一次水果的进价是每千克多少元?
(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?
考点:分式方程的应用.
分析:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,第一次购买用了1200元,第二次购买用了1452元,第一次购水果 ,第二次购水果 ,根据第二次购水果数多20千克,可得出方程,解出即可得出答案;
(2)先计算两次购水果数量,赚钱情况:卖水果量×(实际售价?当次进价),两次合计,就可以回答问题了.
解答:解:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,
根据题意得: ? =20,
解得:x=6,
经检验,x=6是原方程的解,
(2)第一次购水果1200÷6=200(千克).
第二次购水果200+20=220(千克).
第一次赚钱为200×(8?6)=400(元).
第二次赚钱为100×(9?6.6)+120×(9×0.5?6×1.1)=?12(元).
所以两次共赚钱400?12=388(元),
答:第一次水果的进价为每千克6元,该老板两次卖水果总体上是赚钱了,共赚了388元.
点评:本题具有一定的综合性,应该把问题分成购买水果这一块,和卖水果这一块,分别考虑,掌握这次活动的流程.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
26、(2013•昆明)某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.
(1)求打折前每本笔记本的售价是多少元?
(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?
考点:分式方程的应用;一元一次不等式组的应用.
专题:.
分析:(1)设打折前售价为x,则打折后售价为0.9x,表示出打折前购买的数量及打折后购买的数量,再由打折后购买的数量比打折前多10本,可得出方程,解出即可;
(2)设购买笔记本y件,则购买笔袋(90?y)件,根据购买总金额不低于360元,且不超过365元,可得出不等式组,解出即可.
解答:解:(1)设打折前售价为x,则打折后售价为0.9x,
由题意得, +10= ,
解得:x=4,
经检验得:x=4是原方程的根,
答:打折前每本笔记本的售价为4元.
(2)设购买笔记本y件,则购买笔袋(90?y)件,
由题意得,360≤4×0.9×y+6×0.9×(90?y)≤365,
解得:67 ≤y≤70,
∵x为正整数,
∴x可取68,69,70,
故有三种购买方案:
方案一:购买笔记本68本,购买笔袋22个;
方案二:购买笔记本69本,购买笔袋21个;
方案三:购买笔记本70本,购买笔袋20个;
点评:本题考查了分式方程的应用、一元一次不等式组的应用,解答此类应用类题目,一定要先仔细审题,有时需要读上几遍,找到解题需要的等量关系或不等关系.
27、(德阳市2013年)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一
起合做20天恰好完成任务,请问:
(1)乙队单独做需要多少天才能完成任务?
(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程
用了y天,若x; y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那
么两队实际各做了多少天?