弧弦和圆心角

逍遥右脑  2013-12-23 09:04

作课类别课题24.1.3弧、弦、圆心角课型新授
媒体多媒体



标知识
技能1.通过观察实验,使学生了解圆心角的概念.
2.掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.
过程
方法通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题,进一步理解和体会研究几何图形的各种方法.
情感
态度激发学生观察、探究、发现数学问题的兴趣和欲望.
重点在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用.
教学难点探索定理和推导及其应用.
教学过程设计
教学程序及教学内容师生行为设计意图
一、导语这节课我们继续研究圆的性质,请同学们完成下题.
1.已知△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.
2.圆是中心对称图形吗?将圆旋转任意角度后会出现什么情况?我们学过的几何图形中既是中心对称图形,又是轴对称图形的是?
二、探究新知
(一)、圆心角定义
在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,∠AOB的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.

(二)、圆心角、弧、弦之间的关系定理
1.按下列要求作图并回答问题:
如图所示的⊙O中,分别作相等的圆心角∠AOB和∠A′OB′将圆心角∠AOB绕圆心O旋转到∠A?OB?的位置,你能发现哪些等量关系?为什么?
得到: 在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.
2.在等圆中相等的圆心角是否也有所对的弧相等,所对的弦相等呢?
综合1、2,我们可以得到关于圆心角、弧、弦之间的关系定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
3.分析定理:去掉“在同圆或等圆中”这个条件,行吗?
4.定理拓展:
○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,所对的弦也分别相等吗?
○2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,所对的弧也分别相等吗?综上得到
在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.
在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.
综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.
(三)、定理应用
1.课本例1
2.如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.
(1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?
(2)如果OE=OF,那么 与 的大小有什么关系?AB与CD的大小有什么关系?为什么?∠AOB与∠COD呢?
三、课堂训练
完成课本83页练习
补充:如图3和图4,MN是⊙O的直径,弦AB、CD相交于MN上的一点P,∠APM=∠CPM.
(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.
(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.
四、小结归纳
1.圆心角概念.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,则它们所对应的其余各组量都分别相等,及它们的应用.
五、作业设计
作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做.教师布置学生画图,复习旋转知识,为探究本节课定理作铺垫
学生通过画图复习旋转知识,明白绕O点旋转,O点就是旋转中心,旋转30°,就是旋转角是30°

学生画一个圆,按教师要求操作,观察,思考,交流,教师给出圆心角定义,
学生按照要求作图,并观察图形,结合圆的旋转不变性和相关知识进行思考,尝试得出关系定理,再进行严格的几何证明.

学生思考,类比同圆中得到的结论进行探究,猜想,并验证

学生思考,明白该前提条件的不可缺性,师生分析,进一步理解定理.

教师引导学生类比定理独立用类似的方法进行探究,得到推论

学生审题,理清题中的数量关系,由本节课知识思考解决方法.

教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,体会方法,总结规律.

让学生尝试归纳,总结,发言,体会,反思,教师点评汇总

通过学生亲自动手操作发现圆的旋转不变性,为后续探究打下基础

通过该问题引起学生思考,进行探究,发现关系定理,初步感知培养学生的分析能力,解题能力.
为继续探究其推论奠定基础.

感受类比思想,类比中全面透彻地理解和掌握关系定理和它的推论,并进行推广,得到其他几个定理,完整的把握所学知识.
给出一般叙述,以其更好的应用.
培养学生解决问题的意识和能力,体会转化思想,化未知为已知,从而解决本题.

运用所学知识进行应用,巩固知识,形成做题技巧

让学生通过练习进一步理解,培养学生的应用意识和能力

归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯

巩固深化提高
板 书 设 计
课题
圆心角、弧、弦之间的关系定理关系定理应用
1. 2.归纳


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:锐角三角函数值的求法
下一篇:中考复习一元二次方程及其应用学案

逍遥右脑在线培训课程推荐

【弧弦和圆心角】相关文章
【弧弦和圆心角】推荐文章