二次函数复习教案

逍遥右脑  2013-07-25 17:35

设计思想:
这堂课为章节复习课,教师可以先从总体知识结构入手,引导学生逐步回顾所学的知识,要知道本章主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。
目标:
1.知识与技能
初步认识二次函数;
掌握二次函数的表达式,体会二次函数的意义;
会用数表、图像和表达式三种表示方法来表示二次函数,并会相互转化;
会画二次函数,能利用二次函数求一元二次方程的近似解;
利用二次函数的图像和性质解决相关实际问题,灵活应用二次函数。
2.过程与方法
通过利用二次函数的图像解决问题,体会数形结合的数学方法;
在学习探索的过程中逐步体会和认识二次函数。
3.情感、态度与价值观
体会从特殊函数到一般函数的过渡,注意找函数之间的联系和区别;
树立主动参与积极探索尝试、猜想和发现的精神;
注意运用数形结合的思想,改变过去只利用数式,而忽略图形的思想。
教学重点:二次函数的图像和性质。
教学难点:二次函数y= 的图像及性质;二次函数的应用。
教学方法:讨论法、引导式。
教学安排:1课时。
教学媒体:幻灯片。
教学过程:
Ⅰ.知识复习
师:这堂课是这章的总结课,下面我们来看这章整体知识框架图:(幻灯片)

观看这章的知识整体框架,思考下面的问题:
1.你能用二次函数的知识解决哪些问题?
2.日常生活中,你在什么地方见到过二次函数的图像抛物线的样子?
3.你知道二次函数与一元二次方程的关系吗?你能解决什么问题?
同学们,想想你们学习本章的收获是__________。
同学们相互讨论,然后师生互动共同探讨上面的问题。
Ⅱ.典型例题
例1:某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图2-1,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?

要求:(1)请提供四条信息;(2)不必求函数的解析式。
解:(1)2月份每千克销售价是3.5元;(2)2月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9与、4月与10月、3月与11月,2月与12月的销售价相同。
(注:此题答案不唯一,以上答案仅供参考,若有其他答案,只要是根据图象得出的信息,并且叙述正确即可)
讨论:
生:对于这类问题,我常感到无从下手。
师:要重点看一下横轴与纵轴分别是哪一个变量,然后再看一下它的数据分别是多少。
例2:(北京石景山)已知:等边 中, 是关于 的方程 的两个实数根,若 分别是 上的点,且 ,设 求 关于 的函数关系式,并求出 的最小值。
解: 是等边三角形, 。

不合题意,舍去, 即

又 ,

又 ∽
设 则

当 ,即 为 的重点时, 有最小值6。
讨论:
生:这个题目包含的内容较多,我感到难度很大。
师:本题涉及到等边三角形的性质,解直角三角形。二次函数的有关内容,是一道综合性题目。
生:对于这样的题目如何入手呢?
师:要认真分析题目,明确每一条件的用处。
例3:某校初三年级的一场篮球比赛中,如图2-2,队员甲正在投篮,已知球出手时离地面高 ,与篮球中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m。

(1)建立如图2-3的平面直角坐标系,问此球能否准确投中?
(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?
解:(1)

根据题意:球出手点、最高点和蓝圈的坐标分别为 。
设二次函数的解析式
代入 两点坐标为
将 点坐标代入解析式;左=右;所以一定能投中。
(2)将 代入解析式: 盖帽能获得成功。
讨论:
生:此球能否准确投中,与二次函数的知识有何联系,我不大清楚。
师:篮球运行的轨迹为抛物线,蓝圈可以看成一个点,所以此球能否准确投中的问题,实际上就是看一下该点在不在抛物线上即可。
例4:如图2-4,一位篮球运动员跳起投篮,球沿抛物线 运行,然后准确落入篮框内,已知篮框的中心离地面的距离为3.05米。
(1)球在空中运行的最大高度为多少米?
(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?
解:(1) 抛物线 的顶点坐标为(0,3.5)。
∴球在空中运行的最大高度为3.5米。
(2)在 中,当 时,
又 。
当 时, 又
故运动员距离篮框中心水平距离为 米。
讨论:
生:我对运动员距离篮框中心水平距离有点迷惑。
师:运动员距离篮框中心水平距离,就是过蓝框向地面做垂线,垂足与人的站立点的距离。
例5:已知抛物线 。
(1)证明抛物线顶点一定在直线 上。
(2)若抛物线与 轴交于 两点,当 ,且 时,求抛物线的解析式。
(3)若(2)中所求抛物线顶点为 ,与 轴交点在原点上方,抛物线的对称轴与 轴脚于点 ,直线 与 轴交于点 ,点 为抛物线对称轴上一动点,过点 作 ⊥ ,垂足 在线段 上,试问:是否存在点 ,使 若存在,求出点 的坐标;若不存在,请说明理由。
解:(1) ,
∴顶点坐标为( )∴顶点在直线 上
(2)∵抛物线与 轴交于 两点,∴ 。
即 ,解得 。
∵ 或 当 时, (与 矛盾,舍去), 。
当 时, 或 。
(3)∵抛物线与 轴交点在原点的上方,∴
∵直线 与 轴交于点 ∴设 ,则
∵ , 。
解得 。
当 时,
∴ ,
当 时,
∴ 或
讨论:
生:抛物线顶点在直线 上如何证明?
师:抛物线的顶点坐标可以求出吧?
生:只要用公式即可。
师:将抛物线的顶点坐标代入直线的解析式,如果适合直线的解析式,则点在直线 上;否则,点不在直线 上。
Ⅲ.课堂小结
我们这堂课主要需要掌握的是如何利用二次函数及其表示方法、二次函数的图像及性质解决实际问题,即二次函数的应用。
板书设计:
小结与复习
一、知识回顾 例2 例3

二、典型例题 例4 例5

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:点与圆的位置关系
下一篇:九年级数学竞赛一元二次方程的整数解讲座

逍遥右脑在线培训课程推荐

【二次函数复习教案】相关文章
【二次函数复习教案】推荐文章