二次函数教案

逍遥右脑  2014-02-01 15:56

20.1二次函数
一、教学目标:
1.知识与技能:
通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数.
2.数学思考:
学生能对具体情境中的数学信息作出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系.
3.解决问题:
体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程.
4.情感与态度:
通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识.
二、教学重点、难点:
教学重点:认识二次函数,经历探索函数关系、归纳二次函数概念的过程.
教学难点:根据函数解析式的结构特征,归纳出二次函数的概念.
三、教学方法和教学手段:
在确定二次函数的概念和寻求生活实例中的二次函数关系式的过程中,引导学生观察、比较、分析和概括,以小组讨论的形式,进行合作探究.
在教学手段方面,选择了多媒体课件辅助教学的方式.    
四、教学过程:
师生活动设计意图
1、问题感知,情境切入.
教师展示实际问题:
“第18届世界杯足球赛”是今年夏天最“热”的一个话题,绿荫场上运动员挥汗如雨,绿荫场外教练员运筹帷幄.足球运动是一项对运动员状态(包括体能、速度和技术意识)要求很高的项目,一般情况下,足球运动员的状态会随着时间的变化而变化:比赛开始后,球员慢慢进入状态,中间有一段时间球员保持较为理想的状态,随后球员的状态慢慢下降.经实验分析可知:球员的状态综合指数y随时间t的变化规律有如下关系:

(1)比赛开始后第10分钟时与比赛开始后第50分钟时比较,什么时间球员的状态更好?
(2)比赛开始后多少分钟时,球员的状态最好,这样的最好状态能持续多少分钟?
通过学生之间的讨论,很容易得出第(1)问的答案:比赛开始后第10分钟时,y = 140;比赛开始后第50分钟时,y = 220;所以,比赛开始后第50分钟时球员的状态更好.
当学生开始进行第(2)问的解答时,遇到了不同的困难:
(1)不知道如何讨论当50 t 90时,y的变化范围?
(2)通过模仿一次函数的性质,学生求出了函数y = 中,y的变化范围是 .却无法说出这样做的数学依据是什么?
所有的困难都指向一个焦点问题:
y = 是个什么样的函数?它具有什么样的独特性质?
因此,学生产生了研究函数y = 的兴趣,教师趁势提出今天的学习内容.

以“世界杯足球赛”这样贴近学生生活实际的问题为背景,力求更好地激发学生的求知欲,使之成为主动、积极的探索者,并在解决实际问题的过程中体验成功的快乐,同时为新课的引出和学习奠定了基础.
这是一道结合实际的自编题,其中的数据来源于自己做的社会调查.足球运动是一项集体运动项目,对运动员的配合意识要求很高,所以运动员上场后30分钟左右才进入最佳状态,中场休息后状态仍能保持到最佳,50分钟后由于体能的下降影响了状态的发挥.

2、讲解新课,提炼知识.
(1)对比、分析
教师举出生活中的其它实例,感受二次函数的意义,进一步深化对二次函数概念的认识.
① 如图,正方形中圆的半径是4cm,阴影部分的面积Q(cm2)和正方形的边长a(cm)的函数关系式是____________________.

② 某种药品现价每盒26元,两年内每年的降价率都为p,那么,两年后这种药品每盒的价格M(元)和年降价率p的函数关系式是____________________.
答案:M = 26(1- p)2

(2)类比、迁移
教师顺势提问:对y = 、Q = a2 - 16 、M = 26(1- p)2这三个函数你能用一个一般形式来表示吗?
教师参与到学生的分组讨论中去,合作交流,注意及时抓住学生智慧火花的闪现进行引导.教师鼓励学生用不同字母表示,只要把握概念的实质即可,必要时可提示学生,类比一次函数的知识.

(3)二次函数的认识
一般地,我们把形如y = ax2 + bx + c(a≠0)(说明:括号内的条件,在第(4)步之后再补写)的函数叫做二次函数,其中a、b分别是二次项系数、一次项系数,c是常数项.

(4)加深理解
二次函数的定义给出后,教师引导学生分别讨论“a、b、c的取值范围”.学生就问题自由发言,教师充分引导学生发表自己的看法,只要合理,都应肯定.最后师生达到共识:
① a不能为0,因为当a=0时,右边不再是x的二次式;
② b、c都能为0,因为当b=0 、c=0或b、c都为0时,右边仍是x的二次式.
教师对所得出的常量范围,进行概念补写.
通过两个实例的分析,让学生通过自己列解析式,来思考所列解析式的结构特征,为概括二次函数的定义打下基础.

引导学生侧重从解析式的特征思考,透过“引用不同字母” 的表层现象,看到解析式的“结构一致”的本质.敞开思想,广泛议论,实现对二次函数本质的认识.

充分肯定学生的探究结果,使其树立“我也能发现数学”的信心.

教师的提问意在引起学生的思维冲突,使之产生探究的欲望.
遵循学生认知发展及知识系统的形成过程,由一般到特殊逐步为概念的理解铺平道路.
3、分层实践,能力升级.
[快速抢答]
下面各函数中,哪些是二次函数?
(1)① y = 2x2 ② y = - x2 + 3
③ y = (x≠0) ④ y = 15x -1
⑤ y = (x + 1)2 +2 ⑥ y = 3x2-2x-5
⑦ y = -x(x2 + 4) ⑧ y =
答:①、②、⑤、⑥是二次函数

(2)请写出这些二次函数中a、b、c的值.
abc
① y = 2x2200
② y = - x2 + 3

03
⑤ y = (x + 1)2 +2
= x2 + 2x + 3123
⑥ y = 3x2-2x-53-2-5
特别强调:只有把解析式⑤整理成一般形式,才能正确判断解析式中的a、b、c.

1.[轻松完成]:矩形的周长为20cm,它的面积S(cm2)和它的一边长a(cm)的函数关系式是怎样的?并求出此函数的定义域.
答案:S = a(10-a) = -a2 + 10a,
其中函数的定义域为:0< a < 10.

2.[物理中的数学]:钢球从斜面顶端由静止(运动开始时的速度V0=0)开始沿斜面滚下,速度每秒增加1.5m/s
(1)写出即时速度Vt与时间t的函数关系式;
(2)写出平均速度 与时间t的函数
关系式;(提示:本题中,平均速度 )
(3)写出滚动的距离S(单位:米)与滚动的时间t(单位:秒)之间的关系式.(提示:本题中,距离S = 平均速度 时间t)
(4)请判断以上三个函数的类型,如果是二次函数,写出解析式中的a、b、c.
答案:
(1)Vt = 1.5t;
(2) = = ;
(3)S = t = ;
(4)函数Vt = 1.5t和 = 是一次函数,函数S = 是二次函数,解析式中的a = ,b = 0,c = 0.

3.[请你帮个忙]:某果园有100棵橘子树,每一棵树平均结600个橘子.现准备多种一些橘子树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.那么,如何表示增种的橘子树的数量x(棵)与橘子总产量y(个)之间的函数关系式呢?判断这个函数的类型,如果是二次函数,写出解析式中的a、b、c.
答案:

解析式中的a = - 5,b = 100,c = 60000.

4.你出题大家做如图,正方形ABCD的边长是5,E是AB上的一个动点,G是AD的延长线上一点,且BE = DG,GF∥AB,EF∥AD,_____________________________________________?
请同学们以小组为单位尝试编一道实际函数问题,列出的函数关系是可以是二次函数,也可以是一次函数.
估计学生可能想到:
① 矩形AEGF的面积y与 BE的长x
之间的关系可以用怎样的函数来表示?
答案:

② 矩形AEMD的面积y与 BE的
长x之间的关系可以用怎样的函数来表示?
答案:

③ 矩形BEMC的面积y与 BE的长x之间的关系可以用怎样的函数来表示?
答案:

④ 矩形DMFG的面积y与 BE的长x之间的关系可以用怎样的函数来表示?
答案:

⑤ 其它类型:六边形ABCMFG的周长y与 BE的长x之间的函数关系;矩形AEGF的周长y与 BE的长x之间的函数关系;……

这是一道概念辨析题,目的是让学生正确识别二次函数,同时认识二次函数解析式中a、b、c的意义.

通过求函数的定义域,让学生实际问题中的二次函数的特点。
通过这道题的安排,让学生到了二次函数应用的广泛性。同时,学生在列解析式的过程中,从对比的角度全面了解判定二次函数的方法,进一步了解不同函数的差异,从而对函数的本质有更深入了解。

这道实际问题的解决,培养了学生的观察能力和归纳能力,更重要的是让学生体验了实际问题“数学化”的过程.

兴趣是学习的动力源泉,学生在参与编题的过程中,培养了与人合作的精神和创新意识,通过学生多层次、多角度地解决问题的方式,使原本枯燥的数学课堂逐渐被开放、热烈,富于创造性的课堂气氛所代替,成为激发学生潜力的最佳土壤.

4、展示交流,新知.
(1)学生自己,并在班上交流
本节课――
我学会了……
使我感触最深的……
我感到最困难的是……
我最值得学习的同学是……
(2)结合学生所述,教师给予指导:
① 正确理解“二次函数”定义,关注和定义有关的注意问题.
② 生活中处处有数学的影子,只要留心观察身边的事物,开动脑筋,就能用数学知识解决许多的生活实际问题.
课堂小结以教师提问、学生自由讨论的形式进行,借此促进师生心灵的交流,学生对自己清醒的认识和总结,必然促进其自主学习,获得可持续发展的动力.
5、布置作业、巩固知识.
(1)阅读教材相应内容,完成课后习题第45--46页第1、2题.
(2)实践题:
推测植物的生长与温度的关系
科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物的增长情况(如下表)
温度t/℃-7-5-3-11357
植物高度
增长量L/mm12541494941251
由这些数据,科学家推测出植物的增加量L与温度t的函数关系,并由它推测出最适合这种植物增长的温度.
你能想出科学家是怎样推测的吗?请在直角坐标系里画出这个函数的大致图象,根据图象写出你的分析.

必做题促进知识的巩固,实践题供学有余力的学生完成,进一步培养发散思维及社会实践能力.

设置贴近学生生活的实际问题情境,并要求学生尝试画出二次函数的图象来解决实际问题,激发学生探究新知的欲望,为以后的教学埋下伏笔.
五、教案设计说明:
1.注意联系实际,渗透用教学的意识,力求呈现“问题情景――建立数学模型――解释、应用与拓展”的过程,让“人人学有价值的数学”.教学中以实际问题主线贯穿整个教学,强调具体问题的分析、抽象,渗透数学建模思想.注重问题的实际意义,选用贴近学生生活和具有时代气息的例题、习题,激发学生的兴趣,使学生体会二次函数在现实世界中的作用.
2.给学生提供探索和交流的空间,数学活动力求避免单纯的依赖模仿与记忆,而是一个生动活泼、主动和富有个性的过程.围绕本节课所学知识,设置有现实意义的、具有挑战性的开放型问题,激发学生积极思考,引导学生自主探索与合作交流,既能在探索中获取知识,又能不断丰富数学活动的经验,学会探索,学会学习,提高解决问题的能力,发展创新意识和实践能力.
3.谈化概念的形式记忆,关注概念的实际背景与形成过程,采用直观导入、动手操作的方法,借助直观形象,让学生能够理解概念,并初步学会应用.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:35.2直线与圆的位置关系教案
下一篇:直线和圆的位置关系

逍遥右脑在线培训课程推荐

【二次函数教案】相关文章
【二次函数教案】推荐文章