2.1 映射的概念
逍遥右脑 2013-10-18 15:27
2.1 映射的概念
目标:
1.知识与技能
了解映射的概念,掌握象、原象等概念及其简单应用。
2.过程与方法
学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
3.情感、态度与价值观
树立数学应用的观点,培养学习良好的思维品质。
重点:映射的概念。
教学难点:映射的概念。
教学过程:
一、复习引入:
1、在初中我们已学过一些对应的例子:(学生思考、讨论、回答)
①看电影时,电影票与座位之间存在者一一对应的关系
②对任意实数a,数轴上都有唯一的一点A与此相对应
③坐标平面内任意一点A 都有唯一的有序数对(x, y)和它对应
2、函数的概念
本节我们将学习一种特殊的对应—映射。
二、讲解新课:
看下面的例子:设A,B分别是两个集合,为简明起见,设A,B分别是两个有限集
说明:(2)(3)(4)这三个对应的共同特点是:对于左边集合A中的任何一个元素,在右边集合B中都有唯一的元素和它对应
映射:设A,B是两个集合,如果按照某种对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射 记作:
象、原象:给定一个集合A到集合B的映射,且 ,如果元素 和元素 对应,则元素 叫做元素 的象,元素 叫做元素 的原象
关键字词:(学生思考、讨论、回答,教师整理、强调)
①“A到B”:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射,A到B是求平方,B到A则是开平方,因此映射是有序的;
②“任一”:就是说对集合A中任何一个元素,集合B中都有元素和它对应,这是映射的存在性;
③“唯一”:对于集合A中的任何一个元素,集合B中都是唯一的元素和它对应,这是映射的唯一性;
④“在集合B中”:也就是说A中元素的象必在集合B中,这是映射的封闭性.
指出:根据定义,(2)(3)(4)这三个对应都是集合A到集合B的映射;注意到其中(2)(4)是一对一,(3)是多对一
思考:(1)为什么不是集合A到集合B的映射?
回答:对于(1),在集合A中的每一个元素,在集合B中都有两个元素与之相对应,因此,(1)不是集合A到集合B的映射
思考:如果从对应来说,什么样的对应才是一个映射?
一对一,多对一是映射但一对多显然不是映射
辨析:
①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等;
②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;
③存在性:映射中集合A的每一个元素在集合B中都有它的象;
④唯一性:映射中集合A的任一元素在集合B中的象是唯一的;
⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都有原象,即A中元素的象集是B的子集.
映射三要素:集合A、B以及对应法则 ,缺一不可;
三、例题讲解
例1 判断下列对应是否映射?有没有对应法则?
a e a e a e
b f b f b f
c g c g c g
d d
(是) (不是) (是)
是映射的有对应法则,对应法则是用图形表示出来的
例2下列各组映射是否同一映射?
a e a e d e
b f b f b f
c g c g c g
例3判断下列两个对应是否是集合A到集合B的映射?
(1)设A={1,2,3,4},B={3,4,5,6,7,8, 9},对应法则
(2)设 ,对应法则
(3) , ,
(4)设
(5) ,
四、练习:
1.设A={1,2,3,4},B={3,4,5,6,7,8,9},集合A中的元素x按照对应法则“乘2加1”和集合B中的元素2x+1对应.这个对应是不是映射?(是)
2.设A=N*,B={0,1},集合A中的元素x按照对应法则“x除以2得的余数”和集合B中的元素对应.这个对应是不是映射?(不是(A中没有象))
3.A=Z,B=N*,集合A中的元素x按照对应法则“求绝对值”和集合B中的元素对应.这个对应是不是映射? (是)
4.A={0,1,2,4},B={0,1,4,9,64},集合A中的元素x按照对应法则“f :a? b=(a?1)2”和集合B中的元素对应.这个对应是不是映射? (是)
5.在从集合A到集合B的映射中,下列说法哪一个是正确的?
(A)B中的某一个元素b的原象可能不止一个;(B)A中的某一个元素a的象可能不止一个(C)A中的两个不同元素所对应的象必不相同;
(D)B中的两个不同元素的原象可能相同
6.下面哪一个说法正确?
(A)对于任意两个集合A与B,都可以建立一个从集合A到集合B的映射
(B)对于两个无限集合A与B,一定不能建立一个从集合A到集合B的映射
(C)如果集合A中只有一个元素,B为任一非空集合,那么从集合A到集合B只能建立一个映射
(D)如果集合B只有一个元素,A为任一非空集合,则从集合A到集合B只能建立一个映射
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。