一元二次方程模型

逍遥右脑  2013-05-14 13:21




一、教学目标
知识与技能
(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法
在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观
通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点
重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法
创设情境——主体探究——合作交流——应用提高
四、学案
(1)预学检测
3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?
五、教学过程
(一)创设情境、导入新
(1)自学本P2—P3并完成书本
(2)请学生分别回答书本内容再
(二)主体探究、合作交流
(1)观察下列方程:
(35-2x)2=900 4x2-9=0 3y2-5y=7
它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?
(2)一元二次方程的概念与一般形式?
如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数 a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56
(三)应用迁移、巩固提高
例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?
x2-x=1 3x(x-1)=5(x+2) x2=(x-1)2
例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得
3x2-3x=5x+10
移项,合并同类项,得一元二次方程的一般形式
3x2-8x-10=0
其中二次项系数为3,一次项系数为-8,常数项为-10.
学生练习:书本P4练习
(四)总结反思 拓展升华
总结
1.一元二次方程的定义是怎样的?
2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
3.在实际问题转化为一元二次方程数学模型的过程中,体会学习一元二次方程的必要性和重要性。
反思
方程ax3+bx2+cx+d=0是关于x的一元二次方程的条是a=0且b≠0,是一元一次方程的条是a=b=0 且c≠0.
(五)布置作业
(1)必做题P4 习题1.1A组 1.2
(2)选做题:
若xm-2=9是关于x的一元二次方程,试求代数式(m2-5m+6)÷(m2-2m)的值。




版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:中考数学实数总复习
下一篇:平行线之间的距离学案(浙教版)

逍遥右脑在线培训课程推荐

【一元二次方程模型】相关文章
【一元二次方程模型】推荐文章