高一数学上册练习册答案:第一章集合与函数概念

逍遥右脑  2018-10-02 12:21

【导语】让我们共同努力,培养良好的学习习惯,胸怀梦想,珍惜时间,发奋学习,立志成才,让青春载着梦想飞扬!这篇关于《高一数学上册练习册答案:章集合与函数概念》是逍遥右脑为你准备的,希望你喜欢!

  1.1集合

  111集合的含义与表示

  1.D.2.A.3.C.4.1,-1.5.x.6.2,0,-2.

  7.A=(1,5),(2,4),(3,3),(4,2),(5,1).8.1.9.1,2,3,6.

  10.列举法表示为(-1,1),(2,4),描述法的表示方法不,如可表示为(x,y)|y=x+2,

  y=x2.

  11.-1,12,2.

  112集合间的基本关系

  1.D.2.A.3.D.4.,-1,1,-1,1.5..6.①③⑤.

  7.A=B.8.15,13.9.a≥4.10.A={,1,2,1,2},B∈A.

  11.a=b=1.

  113集合的基本运算(一)

  1.C.2.A.3.C.4.4.5.x.6.4.7.-3.

  8.A∪B=x<3,或x≥5.9.A∪B=-8,-7,-4,4,9.10.1.

  11.{a|a=3,或-22

  113集合的基本运算(二)

  1.A.2.C.3.B.4.x.5.2或8.6.x|x=n+12,n∈Z.

  7.-2.8.x>6,或x≤2.9.A=2,3,5,7,B=2,4,6,8.

  10.A,B的可能情形有:A=1,2,3,B=3,4;A=1,2,4,B=3,4;A=1,2,3,4,B=3,4.

  11.a=4,b=2.提示:∵A∩?UB=2,∴2∈A,∴4+2a-12=0a=4,∴A=x=2,-6,∵A∩?UB=2,∴-6?UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0b=2,或b=4.①当b=2时,B=x2+2x-24=0=-6,4,∴-6?UB,而2∈?UB,满足条件A∩?UB=2.②当b=4时,B=x=-6,2,

  ∴2?UB,与条件A∩?UB=2矛盾.

  1.2函数及其表示

  121函数的概念(一)

  1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).

  7.(1)12,34.(2)x≠-1,且x≠-3.8.-34.9.1.

  10.(1)略.(2)72.11.-12,234.

  121函数的概念(二)

  1.C.2.A.3.D.4.x≠0,且x≠-1.5.[0,+∞).6.0.

  7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).

  9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).

  122函数的表示法(一)

  1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.

  8.

  x1234y828589889.略.10.1.11.c=-3.

  122函数的表示法(二)

  1.C.2.D.3.B.4.1.5.3.6.6.7.略.

  8.f(x)=2x(-1≤x<0),

  -2x+2(0≤x≤1).

  9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,

  a+b=0,解得a=1,b=-1.

  10.y=1.2(0

  2.4(20

  3.6(40

  4.8(60

  1.3函数的基本性质

  131单调性与(小)值(一)

  1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k<12.

  7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.

  11.设-10,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.

  131单调性与(小)值(二)

  1.D.2.B.3.B.4.-5,5.5.25.

  6.y=316(a+3x)(a-x)(0

  11.日均利润,则总利润就.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12

  132奇偶性

  1.D.2.D.3.C.4.0.5.0.6.答案不,如y=x2.

  7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.

  8.f(x)=x(1+3x)(x≥0),

  x(1-3x)(x<0).9.略.

  10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.

  11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<32b-32b<00

  单元练习

  1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.

  10.D.11.0,1,2.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].

  15.f12

  17.T(h)=19-6h(0≤h≤11),

  -47(h>11).18.0≤x≤1.

  19.f(x)=x只有的实数解,即xax+b=x(*)只有实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.

  20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].

  21.(1)f(4)=4×13=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+0.5×65=13.65.

  (2)f(x)=1.3x(0≤x≤5),

  3.9x-13(5

  6.5x-28.6(6

  22.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:2018高一数学寒假作业答案
下一篇:高一上册数学期中试题(附答案)[1]

逍遥右脑在线培训课程推荐

【高一数学上册练习册答案:第一章集合与函数概念】相关文章
【高一数学上册练习册答案:第一章集合与函数概念】推荐文章