对数的运算性质

逍遥右脑  2013-08-27 15:14

数学必修1:对数的运算性质
目的:(1)理解对数的运算性质;
(2)知道用换底公式能将一般对数转化成自然对数或常用对数;
(3)通过阅读材料,了解对数的发现历史以及对简 化运算的作用.
重点:对数的运算性质,用换底公式将一般对数转化成自然对数或常用对数
教学难 点:对数的运算性质和换底公式的熟练运用.
教学过程:
一、引入课题
1.对数的定义: ;
2.对数恒等式: ;
二、新课教学
1.对数的运算性质
提出问题:
根据对数的定义及对数与指数的关系解答下列问 题:
○1设 , ,求 ;
○2设 , ,试利用 、 表示 ? .
(学生独立思考完成解答,教师组织学生讨论评析,进行归纳总结概括得出对数的运算性质1,并引导学生仿此推导其余运算性质)
运算性质:
  如果 ,且 , , ,那么:
○1 ? + ;
○2 - ;
○3 .
(引导学生用自然语言叙述上面的三个运算性质)
学生活动:
○1阅读教材P75例3、4,;
设 计意图:在应用过程中进一步理解和掌握对数的运算性质.
○2完成教材P79练习1~3
设计意图:在练习中反馈学生对对数运算性质掌握的情况,巩固所学知识.
2. 利用科学计算器求常用对数和自然对数的值
设计意图:学会利用计算器、计算机求常用对数值和自然对数值的方法.
思考:对于本小节开始的问题中,可否利用计算器求解 的值?从而引入换底公式.
3.换底公式
( ,且 ; ,且 ; ).
学生活动
○1根据对数的定义推导对数的换底公式.
设计意图:了解换底公式的推导过程与思想方法,深刻理解指数与对数的关系.
○2思考完成教材P76问题(即本小节开始提出的问题);
○3利用换底公式推导下面的结论
(1) ;
(2) .
设计意图:进一步体会并熟练掌握换底公式的应用.
说明:利用换底公式解题时常常换成常用对数,但有时还要根据 具体题目确定底数.
4.课堂练习
○1教材P79 练习4
○2 已知
○3试求: 的值。(对换5 与2,再试一试)
○4
○5设 , ,试用 、 表示
三、归纳小结,强化思想
本节主要学习了对 数的运算性质和换底公式的推导与应用,在教学中应用多给学生创造尝试、思考、交流、讨论、表达的机会,更应注重渗透转化的思想方法.
四、作业布置
1.基础题:教材P86习题2.2(A组)第3~5、1 1题;
2.提高题:
○1设 , ,试用 、 表 示 ;
○2设 , ,试用 、 表示 ;
○3设 、 、 为正数,且 ,求证: .
3.课外思考题:
设正整数 、 、 ( ≤ ≤ )和实数 、 、 、 满足:
, ,
求 、 、 的值.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:点线面之间的位置关系
下一篇:对数函数的概念

逍遥右脑在线培训课程推荐

【对数的运算性质】相关文章
【对数的运算性质】推荐文章