复数的几何意义学案练习题

逍遥右脑  2013-07-24 11:02

3.3 复数的几何意义

一、知识要点
1.了解复数的几何意义,会用复平面内的点和向量来表示复数;
2.了解复数加减法的几何意义,进一步体会数形结合的思想.
二、典型例题
例1.在复平面内,分别用向量表示下列复数.

例2.已知复数 试比较它们的模的大小.

例3.设 ,满足下列条件的点 的集合是什么图形?
⑴ ;⑵
例4.设 ,满足下列条件的点 的图形是什么?
⑴ ;⑵ .

三、巩固练习
1.⑴求证: .⑵求 的模.

2.设 ,复数 在复平面内对应点分别为 , 为原点,则 面积为 .
3.已知点P对应的复数z符合下列条件,分别说出P的轨迹,并求出 的曲线方程.
⑴ ;⑵ .

四、课堂小结
五、课后反思
六、课后作业
1.复数 在复平面内对应的点位于第 象限.
2.复数 与 分别表示向量 与 ,则 表示的复数为 .
3.设复数 满足 ,则 =
4.设复数 满足条件 ,那么 的最大值为 .
5.复数 与点 对应, 为两个给定的复数, ,则 确定的点 构成图形为 .
6.已知 为复数, 为实数, 且 ,求 .
7.已知复数 满足 ,求 的最大值,最小值分别是多少.

8.如果复数 的模不大于1,而 的虚部的绝对值不小于 ,求复数 对应的点组成的平面图形面积为多少?

9.已知复数 满足 , 的虚部为2, 所对应的点A是第一象限.
⑴求 ;⑵若 在复平面上对应的点分别为 ,求 .
订正栏:


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:高二数学参数方程的概念学案
下一篇:演绎推理

逍遥右脑在线培训课程推荐

【复数的几何意义学案练习题】相关文章
【复数的几何意义学案练习题】推荐文章