2012届高考数学知识梳理函数的奇偶性与周期性复习教案

逍遥右脑  2013-06-16 20:22




教案17 函数的奇偶性与周期性
一、前检测
1. 下列函数中,在其定义域内即是奇函数又是减函数的是( A )
A. B. C. D.

2. (08辽宁)若函数 为偶函数,则 ( C )
A. B. C. D.

3. 已知 在R上是奇函数,且 ( A )
A. B.2 C.-98 D.98

二、知识梳理
1.函数的奇偶性:
(1)对于函数 ,其定义域关于原点对称:
如果______________________________________,那么函数 为奇函数;
如果______________________________________,那么函数 为偶函数.
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称.
(3)奇函数在对称区间的增减性 ;偶函数在对称区间的增减性 .
(4)若奇函数 在 处有定义,则必有
解读:

2.函数的周期性
对于函数 ,如果存在一个非零常数T,使得当 取定义域内的每一个值时,都有 ,则 为周期函数,T为这个函数的周期.
解读:

3.与函数周期有关的结论:
①已知条中如果出现 、或 ( 、 均为非零常数, ),都可以得出 的周期为 ;
② 的图象关于点 中心对称或 的图象关于直线 轴对称,均可以得到 周期
解读:
三、典型例题分析
例1 判断下列函数的奇偶性:
(1) 答案:定义域不关于原点对称,非奇非偶

(2)
解:定义域为:
所以 ,是奇函数。

(3)
解法一:当 , ,
当 , ,
所以,对 ,都有 ,
所以 是偶函数
解法二:画出函数图象
解法三: 还可写成 ,故为偶函数。

(4)
解:定义域为 ,对 ,都有 ,
所以既奇又偶

变式训练:判断函数 的奇偶性。
解:当 时, 是偶函数
当 时, ,即 ,
且 ,
所以非奇非偶

小结与拓展:几个常见的奇函数:
(1) (2) (3) (4)

小结与拓展:定义域关于原点对称是函数具有奇偶性的必要条


例2 已知定义在 上的函数 ,当 时,
(1)若函数 是奇函数,当 时,求函数 的解析式;答案:

(2)若函数 是偶函数,当 时,求函数 的解析式;答案:


变式训练:已知奇函数 ,当 时, ,求函数 在R上的解析式;
解:函数 是定义在R上的奇函数,

当 时, ,

小结与拓展:奇偶性在求函数解析式上的应用

例3 设函数 是定义在R上的奇函数,对于 都有 成立。
(1)证明 是周期函数,并指出周期;
(2)若 ,求 的值。
证明:(1)

所以, 是周期函数,且
(2) ,

变式训练1:设 是 上的奇函数, ,当 时, ,
则 等于 ( B )
A . 0.5 B. C. 1.5 D.

变式训练2:(06安徽)函数 对于任意实数 满足条 ,若
则 __________。
解:由 得 ,所以 ,
则 。

小结与拓展:只需证明 ,即 是以 为周期的周期函数


四、归纳与总结(以学生为主,师生共同完成)
1.知识:
2.思想与方法:
3.易错点:
4.反思(不足并查漏):




版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:第六章三角函数(高中数学竞赛标准教材)
下一篇:不等式的解法

逍遥右脑在线培训课程推荐

【2012届高考数学知识梳理函数的奇偶性与周期性复习教案】相关文章
【2012届高考数学知识梳理函数的奇偶性与周期性复习教案】推荐文章