2012届高考物理第一轮考纲知识复习 机械振动 机械波

逍遥右脑  2014-03-07 11:33

第1章 机械振动 机械波
【考纲知识梳理】
一、机械振动
1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动.
(1)振动的特点: ①存在某一中心位置;
②往复运动,这是判断物体运动是否是机械振动的条件.
(2)产生振动的条件: ①振动物体受到回复力作用;
②阻尼足够小;
2、回复力:振动物体所受到的总是指向平衡位置的合外力.
(1)回复力时刻指向平衡位置;
(2)回复力是按效果命名的, 可由任意性质的力提供.可以是几个力的合力也可以是一个力的分力;
(3)合外力:指振动方向上的合外力,而不一定是物体受到的合外力.
(4)在平衡位置处:回复力为零,而物体所受合外力不一定为零.如单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零.
3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位置;平衡位置通常在振动轨迹的中点。“平衡位置”不等于“平衡状态”。平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)
二.简谐运动
1、简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
式中x指振动物体相对于平衡位置的位移,起点在平衡位置,终点随物体的所在位置而变化、方向始终由平衡位置指向物体所在位置,如图所示弹簧振子位移的示意图。
2、简谐运动的规律:
(1)弹簧振子:一个可作为质点的小球与一根弹性很好且不计质量的弹簧相连组成一个弹簧振子。一般来讲,弹簧振子的回复力是弹力(水平的弹簧振子)或弹力和重力的合力(竖直的弹簧振子)提供的。弹簧振子与质点一样,是一个理想的物理模型。
(2)弹簧振子振动周期:T=2 ,只由振子质量和弹簧的劲度决定,与振幅无关,也与弹簧振动情况无关。(如水平方向振动或竖直方向振动或在光滑的斜面上振动或在地球上或在月球上或在绕地球运转的人造卫星上)
(3)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是 。这个结论可以直接使用。
(4)振动过程中各物理量的变化情况
四个阶段中,振子的位移,回复力、速度和加速度的变化如下表:
振动体位置位移X回复力F加速度a速度v势能动能
方向大小方向大小方向大小方向大小
平衡位置O000最大最小最大
最大位移处A指向A最大指向O最大指向O0→最大0最大最小
平衡位置O→最大位移处A指向A0→最大指向O0→最大指向O最大O→A最大→0最小→最大最大→最小
最大位移处A→平衡位置O指向A最大→0指向O最大→0指向O最大→0A→O0→最大最大→最小最小→最大
①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。
②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大
(5)周期性:
①每经过一个周期,描述振动的物理量大小和方向都恢复到原来状态,振动质点都以相同的方向通过原位置。
②振动质点在一个周期内通过的路程为4A,半个周期通过的路程为2A,但四分之一周期通过的路程也能大于A也可能等于A也可能小于A,这要看从何位置开始计时。
四、机械波
1、定义:机械振动在介质中传播就形成机械波.
2、产生条件:(1)有作机械振动的物体作为波源.(2)有能传播机械振动的介质.
3、分类:①横波:质点的振动方向与波的传播方向垂直.凸起部分叫波峰,凹下部分叫波谷
②纵波:质点的振动方向与波的传播方向在一直线上.质点分布密的叫密部,疏的部分叫疏部,液体和气体不能传播横波。
4.机械波的传播过程
(1)机械波传播的是振动形式和能量.质点只在各自的平衡位置附近做振动,并不随波迁移.
后一质点的振动总是落后于带动它的前一质点的振动。
(2)介质中各质点的振动周期和频率都与波源的振动周期和频率相同.
(3)由波源向远处的各质点都依次重复波源的振动.
五、描述机械波的物理量
1.波长λ:两个相邻的在振动过程中相对平衡位置的位移总是相等的质点间的距离叫波长.在横波中,两个相邻的波峰或相邻的波谷之间的距离.在纵波中两相邻的的密部(或疏部)中央间的距离,振动在一个周期内在介质中传播的距离等于波长
2.周期与频率.波的频率由振源决定,在任何介质中传播波的频率不变。波从一种介质进入另一种介质时,唯一不变的是频率(或周期),波速与波长都发生变化.
3.波速:单位时间内波向外传播的距离。v=s/t=λ/T=λf,波速的大小由介质决定。
六、波的图象
1、坐标轴:规定用横坐标x表示在波的传播方向上各个质点的平衡位置,纵坐标y表示某一时刻各个质点偏离平衡位置的位移,连结各质点位移量末端得到的曲线叫做该时刻波的图象
2、 图象特点:是一条正弦(余弦)曲线;
3、 物理意义:显示某一瞬间波传播方向上介质中各质点离开平衡位置的位移情况,类似人们给大型团体操队伍拍的一张照片。
注意:波的图象和振动图象是根本不同的,波的图象描述的是介质中“各质点”在“某一时刻”离开平衡位置的位移;而振动图象描述的是“一个质点”在“各个时刻”离开平衡位置的位移。
4、 波的图象的特点
波图象的重复性:相隔时间为周期的整数倍的两个时刻的波的图象是相同的;
波传播方向双向性:不指定波的传播方向时,图象中波可能向x轴正向或x轴负向传播;
5、 横波图象的应用:
(1)可知波动中质点的振幅和波长
(2)若已知波的传播方向,可知介质质点的振动方向,反之亦然。
(3)相邻的波峰波谷点间的质点振动方向相同
(4)相邻平衡位置间以波峰(或波谷)对称的质点振动方向相反.
(5)若知波速v,可求此时刻以后的波形图,方法是把波形图平移Δx=vΔt的距离。
6、 波的传播方向与质点的振动方向关系确定方法。
(1)质点带动法(特殊点法):
由波的形成传播原理可知,后振动的质点总是重复先振动质点的运动,若已知波的传播方向而判断质点振动方向时,可在波源一侧找与该点距离较近(小于 )的前一质点,如果前一质点在该质点下方,则该质点将向下运动(力求重复前面质点的运动),否则该质点向上运动。例如向右传的某列波,某时刻波的图象如图所示,试判断质点M的振动方向,可在波源一侧找出离M较近的前一质点M′,M′在M下方,则该时刻M向下运动。
(2)微平移法:
所谓微移波形,即将波形沿波的传播方向平衡微小的一段距离得到经过微小一段时间后的波形图,据质点在新波形图中的对应位置,便可判断该质点的运动方向。如图所示,原波形图(实线)沿传播方向经微移后得到微小一段时间的波形图(虚线),M点的对应位置在M′处,便知原时刻M向下运动。
(3)上下坡法
沿波的传播方向看去,“上坡”处的质点向下振动。"下坡"处的质点向上振动。如图所示,简称“上坡下,下坡上”
(4)同侧法
七、波的现象
1.波的反射:波遇到障碍物会返回来继续传播的现象.
(1)波面:沿波传播方向的波峰(或波谷)在同一时刻构成的面.
(2)波线:跟波面垂直的线,表示波的传播方向.
(3)入射波与反射波的方向关系.
①入射角:入射波的波线与平面法线的夹角.
② 反射角:反射波的波线与平面法线的夹角.
③在波的反射中,反射角等于入射角;反射波的波长、频率和波速都跟入射波的相同.
(4)特例:夏日轰鸣不绝的雷声;在空房子里说话会听到声音更响.
(5)人耳能区分相差0.1 s以上的两个声音.
2.波的折射: 波从一种介质射入另一种介质时,传播方向发生改变的现象.
(1)波的折射中,波的频率不变,波速和波长都发生了改变.
(2)折射角:折射波的波线与界面法线的夹角.
(3)入射角i与折射角r的关系 (V1和v2是波在介质I和介质Ⅱ中的波速.i为I介质中的入射角,r为Ⅱ介质中的折射角).
3.波的衍射:波可以绕过障碍物继续传播的现象.
衍射是波的特性,一切波都能发生衍射.产生明显衍射现象的条件是:障碍物或孔的尺寸比波长小或与波长相差不多。
例如:声波的波长一般比墙坡大,“隔墙有耳”就是声波衍射的例证.
说明:衍射是波特有的现象.
4.波的叠加与波的干涉
(1)波的叠加原理:在两列波相遇的区域里,每个质点都将参与两列波引起的振动,其位移是两列波分别引起位移的矢量和.相遇后仍保持原来的运动状态.波在相遇区域里,互不干扰,有独立性.
(2)波的干涉:
①条件:频率相同的两列同性质的波相遇.
②现象:某些地方的振动加强,某些地方的振动减弱,并且加强和减弱的区域间隔出现,加强的地方始终加强,减弱的地方始终减弱,形成的图样是稳定的干涉图样.
说明:
①加强、减弱点的位移与振幅.
加强处和减弱处都是两列波引起的位移的矢量和,质点的位移都随时间变化,各质点仍围烧平衡位置振动,与振源振动周期相同.
加强处振幅大,等于两列波的振幅之和,即A=A1 +A2,质点的振动能量大,并且始终最大.
减弱处振幅小,等于两列波的振福之差,即A=?A1-A2?,质点振动能量小,并且始终最小,若A1=A2,则减弱处不振动.
加强点的位移变化范围: 一?A1 +A2?~?A1 +A2? 减弱点位移变化范围:一?A1-A2?~?A1-A2?
②干涉是波特有的现象.
③加强和减弱点的判断.
波峰与波峰(波谷与波谷)相遇处一定是加强的,并且用一条直线将以上加强点连接起来,这条直线上的点都是加强的;而波峰与波谷相遇处一定是减弱的,把以上减弱点用直线连接起来,直线上的点都是减弱的.加强点与减弱点之间各质点的振幅介于加强点与减弱点振幅之间.
当两相干波源振动步调相同时,到两波源的路程差Δs是波长整数倍处是加强区.而路程差是半波长奇数倍处是减弱区.
任何波相遇都能叠加,但两列频率不同的同性质波相遇不能产生干涉.
5.驻波:两列沿相反方向传播的振幅相同、频率相同的波叠加时,形成驻波.
(1)波节:始终静止不动的点.(2)波腹:波节与波节之间振幅最大的点.(3)驻波?特殊的干涉现象:波源特殊;波形特殊
说明:驻波与行波的区别.
①物理意义不同:驻波是两列波的特珠干涉现象,行波是一列波在介质中的传播.
②质点的振动情况不同:在行波中各个质点作振格相同的简谐运动,在驻波中各个质.点作振幅不同的简谐运动;处于波腹位置的质点振幅最大;处于波节位置的质点振幅等于零;其他一些质点的振幅也不相同,但都比波腹处质点的振幅小.
③波形不同:行波波形经过一段时间,波形向前“平移”,而驻波波形并不随时间发生平移,只是各质点的振动位移发生变化而已.
6.多普勒效应
(1)由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象.实质是:波源的频率没有变化,而是观察者接收到的频率发生了变化.
(2)多普勒效应的产生原因
观察者接收到的频率等于观察者在单位时间内接收到的完全波的个数.当波以速度v通过接收者时,时间t内通过的完全波的个数为N=vt/λ,因而单位时间内通过接收者的完全波的个数,即接收频率f v/λ.
若波源不动,观察者朝向波源以速度V2运动,由于相对速度增大而使得单位时间内通过观察者的完全波的个数增多,即 ,可见接收频率增大了.同理可知,当观察者背离波源运动时,接收频率将减小.
若观察者不动,波源朝向观察者以速度v1运动,由于波长变短为λ/=λ-v1T,而使得单位时间内通过观察者的完全波的个数增多,即 ,可见接收频率亦增大,同理可知,当波源背离观察者运动时,接收频率将减小.
注:发生多普勒效应时,波源的真实率不发生任何变化,只是观察者接收到的频率发生了变化.
(3)相对运动与频率的关系
①波源与观察者相对静止:观察者接收到的频率等于波源的频率.
②波源与观察者相互接近:观察者接收到的频率增大.
③波源与观察者相互远离:观察者接收到的频率减小.
【要点名师透析】
类型一 简谐运动的规律
【例1】(2010?全国卷Ⅰ?21)一简谐振子沿x轴振动,平衡位置在坐标原点。 时刻振子的位移 ; 时刻 ; 时刻 。该振子的振幅和周期可能为
A.0. 1 m, B.0.1 m, 8s C.0.2 m, D.0.2 m,8s
【答案】A
【解析】在t= s和t=4s两时刻振子的位移相同,第一种情况是此时间差是周期的整数倍 ,当n=1时 s。在 s的半个周期内振子的位移由负的最大变为正的最大,所以振幅是0.1m。A正确。
第二种情况是此时间差不是周期的整数倍则 ,当n=0时 s,且由于 是 的二倍说明振幅是该位移的二倍为0.2m。如图答案D。
类型二 简谐运动的图象
【例2】(2011?温州模拟)如图所示为一弹簧振子的振动图象,试完成以下问题:
(1)写出该振子简谐运动的表达式.
(2)在第2 s末到第3 s末这段时间内,弹簧振子的加速度、速度、动能和弹性势能各是怎样变化的?
(3)该振子在前100 s的总位移是多少?路程是多少?
【答案】(1) (2)见解析 (3)0 5 m
【详解】 (1)由振动图象可得:A=5 cm,T=4 s, =0则 ,故该振子做简谐运动的表达式为:
(2)由图可知,在t=2 s时振子恰好通过平衡位置,此时加速度为零,随着时间的延续,位移值不断加大,加速度的值也变大,速度值不断变小,动能不断减小,弹性势能逐渐增大.当t=3 s时,加速度的值达到最大,速度等于零,动能等于零,弹性势能达到最大值.
(3)振子经过一个周期位移为零,路程为5×4 cm=20 cm,前100 s刚好经过了25个周期,所以前100 s振子位移x=0,振子路程s=20×25 cm=500 cm=5 m.
类型三 振动图象和波动图象的综合应用
【例3】(2010?北京?17)一列横波沿x轴正向传播,a、b、c、d为介质中沿波传播方向上四个质点的平衡位置。某时刻的波形如图1所示,此后,若经过 周期开始计时,则图2描述的是
A.a处质点的振动图象B.b处质点的振动图象
C.c处质点的振动图象D.d处质点的振动图象
【答案】B
【详解】由波的图像经过 周期a到达波谷,b到达平衡位置向下运动,c到达波峰,d到达平衡位置向上运动,这是四质点在0时刻的状态,只有b的符合振动图像,答案B。
类型四 波传播过程中的多解问题
【例4】
(1)波传播的可能距离;
(2)可能的周期;
(3)可能的波速;
(4)若波速是35 m/s,求波的传播方向;
(5)若0.2 s小于一个周期时,求传播的距离、周期、波速.
【详解】 (1)波的传播方向有两种可能:向左传播或向右传播.
向左传播时,传播的距离为x=nλ+3λ/4=(4n+3) m (n=0、1、2…)
向右传播时,传播的距离为x=nλ+λ/4=(4n+1) m (n=0、1、2…)
(2)向左传播时,传播的时间为t=nT+3T/4得:T=4t/(4n+3)=0.8/(4n+3)(n=0、1、2…)
向右传播时,传播的时间为t=nT+T/4得:T=4t/(4n+1)=0.8/(4n+1)(n=0、1、2…)
(3)计算波速,有两种方法:v=x/t或v=λ/T向左传播时,v=x/t=(4n+3)/0.2=(20n+15) m/s.
或v=λ/T=4(4n+3)/0.8=(20n+15) m/s. (n=0、1、2…)
向右传播时,v=x/t=(4n+1)/0.2=(20n+5) m/s.或v=λ/T=4(4n+1)/0.8=(20n+5) m/s. (n=0、1、2…)
(4)若波速是35 m/s,则波在0.2 s内传播的距离为x=vt=35×0.2 m=7 m= λ,所以波向左传播.
(5)若0.2 s小于一个周期,说明波在0.2 s内传播的距离小于一个波长.则:向左传播时,传播的距离x=3λ/4=3 m;传播的时间t=3T/4,得:周期T=0.267 s;波速v=15 m/s.
向右传播时,传播的距离为x=λ/4=1 m;传播的时间t=T/4,得:周期T=0.8 s;波速v=5 m/s.
【感悟高考真题】
1.(2011?四川理综?T16)如图为一列沿x轴负方向传播的简谐横波在t=0时的波形图,当Q点在t=0时的振动状态传到P点时,则
A.1cm<x<3cm范围内的质点正在向y轴的负方向运动
B.Q处的质点此时的加速度沿y轴的正方向
C. Q处的质点此时正在波峰位置
D. Q处的质点此时运动到p处
【答案】选B.
【详解】将图中的波形图往左平移 ,可知A、C错,B正确;再由于机械波传播的是振动的形式和能量,质点不随波迁移,则D错.
2.(2011?大纲版全国?T21)一列简谐横波沿x轴传播,波长为1.2m,振幅为A。当坐标为x=0处质元的位移为 且向y轴负方向运动时.坐标为x=0.4m处质元的位移为 。当坐标为x=0.2m处的质元位于平衡位置且向y轴正方向运动时,x=0.4m处质元的位移和运动方向分别为
A. 、沿y轴正方向 B. 、沿y轴负方向
C. 、沿y轴正方向 D. 、沿y轴负方向
【答案】选C
【详解】根据题意,画出此时波形图,可以看到,此时x=0.2m处的质元正在平衡位置向下运动。再经过半个周期,x=0.2m处的质元回到平衡位置向上运动,在这半个周期当中,x=0.4m处的质元已经过了波谷正在向着平衡位置运动,根据简谐运动的对称性,此时的位移与半个周期之前的位移大小相等。所以C正确。
3.(2011?重庆理综?T17)介质中坐标原点0处的波源在t=0时刻开始振动,产生的简谐波沿x轴正向传播,t0时刻传到L处,波形如题17图所示。下列能描述x0处质点振动的图象是

【答案】选C.
【详解】从波形图上看出,x0处的质点下一时刻的振动方向是向y轴负方向运动,所以振动图线是A或C,考虑到波传播到L处, L处质点的起振方向向下,所以,振动图线必是C.
4.(2011?上海高考物理?T5)两个相同的单摆静止于平衡位置,使摆球分别以水平初速 、 ( )在竖直平面内做小角度摆动,它们的频率与振幅分别为 和 ,则
(A) , (B) ,
(C) , (D) ,
【答案】选C.
【详解】根据单摆的周期公式 ,两单摆的摆长相同则周期相同,频率相同,又因为 ,所以最低点动能 ,根据机械能守恒,在最高点的重力势能 ,即振幅 ,所以C选项正确.
5.(2011?上海高考物理?T10)两波源 在水槽中形成的波形如图所示,其中实线表示波峰,虚线表示波谷,则
(A)在两波相遇的区域中会产生干涉
(B)在两波相遇的区域中不会产生干涉
(C) 点的振动始终加强
(D) 点的振动始终减弱
【答案】选B.
【详解】从图中看,两列水波的波长不同,波在水中的速度都相等,根据 ,可知两列波的周期不相等,不满足相干条件,在两波相遇的区域中不会产生干涉现象,B正确.
6.(2011?上海高考物理?T24)两列简谐波沿x轴相向而行,波速均为 ,两波源分别位于A、B处, 时的波形如图所示。当 时,M点的位移为 cm,N点的位移为 cm。
【答案】2,0
【详解】2.5s内,两列波传播的距离 ,当A波向右传播1m时,
A波如图中的虚线所示,B波如图中的实线所示,所以,M点位移为2cm,N点位移为零,
7.(2011?新课标全国卷?T34(1))一振动周期为T,振幅为A,位于x=0点的波源从平衡位置沿y轴正向开始做简谐振动,该波源产生的一维简谐横波沿x轴正向传播,波速为v,传播过程中无能量损失,一段时间后,该振动传播至某质点p,关于质点p振动的说法正确的是______。
A振幅一定为A
B周期一定为T
C速度的最大值一定为v
D开始振动的方向沿y轴向上或向下取决于它离波源的距离
E若p点与波源距离s=vT,则质点p的位移与波源的相同
【答案】选A、B、E。
【详解】机械波在传播过程中,把波源的信息传播出去了,即把波源的振动周期、振幅、开始振动的方向等信息都传播出去,各质点的振动周期、振幅、开始振动方向均与波源相同,故D错,A、B正确。波的传播速度和质点的振动速度是两回事,故C错。当p点与波源距离s=vT时,即p点与波源相差一个波长,两质点的振动情况完全一样,故E正确。
8.(2011?北京高考?T16)介质中有一列简谐机械波传播,对于其中某个振动质点
A.它的振动速度等于波的传播速度
B. 它的振动方向一定垂直于波的传播方向
C.它在一个周期内走过的路程等于一个波长
D.它的振动频率等于波源的振动频率
【答案】选D.
【详解】简谐机械波介质中的各质点都做简谐运动,其速度按照正弦或余弦规律变化,与波的传播速度是两码事,A错误;横波的振动方向垂直于波的传播方向,而纵波的振动方向与波的传播方向在一条直线上,B错误,简谐机械波介质中的质点一个周期内走过的路程等于四个振幅,而波一个周期传播的距离等于一个波长,C错误;机械波介质中的各质点做简谐运动的频率都相等,都等于波源的振动频率,所以D正确.
9.(2010?重庆?14)一列简谐波在两时刻的波形如题14图中实践和虚线所示,由图可确定这列波的
A.周期
B.波速
C.波长
D.频率
【答案】C
【解析】只能确定波长,正确答案C。题中未给出实线波形和虚线波形的时刻,不知道时间差或波的传播方向,因此无法确定波速、周期和频率。
10.( 2010?天津?4)一列简谐横波沿x轴正向传播,传到M点时波形如图所示,再经0.6s,N点开始振动,则该波的振幅A和频率f为
A.A=1m f=5HZ
B.A=0. 5m f=5HZ
C.A=1m f=2.5 HZ
D.A=0.5m f=2.5 HZ
答案:D
11.(2010?福建?15)一列简谐横波在t=0时刻的波形如图中的实线所示,t=0.02s时刻的波形如图中虚线所示。若该波的周期T大于0.02s,则该波的传播速度可能是
A.2m/s
B.3m/s
C.4m/s
D.5m/s
答案:B
12. (2010?上海物理?2)利用发波水槽得到的水面波形如a,b所示,则
(A)图a、b均显示了波的干涉现象
(B)图a、b均显示了波的衍射现象
(C)图a显示了波的干涉现象,图b显示了波的衍射现象
(D)图a显示了波的衍射现象,图b显示了波的干涉现象
【解析】D
本题考查波的干涉和衍射。难度:易。
13. (2010?上海物理?3)声波能绕过某一建筑物传播而光波却不能绕过该建筑物,这是因为
(A)声波是纵波,光波是横波 (B)声波振幅大,光波振幅小
(C)声波波长较长,光波波长很短 (D)声波波速较小,光波波速很大
【解析】C
本题考查波的衍射条件:障碍物与波长相差不多。难度:易。
14.(2010?上海物理?16)如右图,一列简谐横波沿 轴正方向传播,实线和虚线分别表示<时的波形,能正确反映 时波形的是图
答案:D
解析:因为t2<T,可确定波在0.5s的时间沿x轴正方向传播 ,即 ,所以T=2s, ,波峰沿x轴正方向传播 ,从 处到 处,选D。
本题考查波的传播及波长、周期等。
难度:中等。
15.( 2010?上海物理?20)如图,一列沿 轴正方向传播的简谐横波,振幅为 ,波速为 ,在波的传播方向上两质点 的平衡位置相距 (小于一个波长),当质点 在波峰位置时,质点 在 轴下方与 轴相距 的位置,则
(A)此波的周期可能为
(B)此波的周期可能为
(C)从此时刻起经过 , 点可能在波谷位置
(D)从此时刻起经过 , 点可能在波峰位置
解析:如上图, , 。根据 , ,A正确,从此时刻起经过0.5s,即 ,波沿x轴正方向传播 =1.0m,波峰到x=1.2m处,b不在波峰,C错误。
如下图, , ,根据 , ,B错误;
从此时可起经过0.5s,即 ,波沿x轴正方向传播 =1.0m,波峰到x=1.0m处,x=0.4的b在波峰,D正确。
本题考查波的传播,出现非 和非 得整数倍的情况,有新意。
难度:难。
【考点模拟演练】
1.(2011?银川模拟)在飞机的发展史中有一个阶段,飞机上天后不久,飞机的机翼很快就抖动起来,而且越抖越厉害,后来人们经过了艰苦地探索,利用在飞机机翼前缘处装置一个配重杆的方法解决了这一问题,在飞机机翼前装置配重杆的主要目的是( )
A.加大飞机的惯性 B.使机体更加平衡
C.使机翼更加牢固 D.改变机翼的固有频率
【答案】选D.
【详解】飞机飞上天后,在气流周期性驱动力作用下做受迫振动,机翼越抖越厉害说明气流驱动力周期与机翼的固有周期非常接近或相等.在机翼前缘处装置配重杆,目的是通过改变机翼的质量来改变其固有频率,使驱动力频率与固有频率相差较大,从而达到减振的目的,故D选项正确.
2.某振动系统的固有频率为f0,在周期性驱动力的作用下做受迫振动,驱动力的频率为f.若驱动力的振幅保持不变,下列说法中正确的是( )
A.当f<f0时,该振动系统的振幅随f增大而减小
B.当f>f0时,该振动系统的振幅随f减小而增大
C.该振动系统的振动稳定后,振动的频率等于f0
D.该振动系统的振动稳定后,振动的频率等于f
【答案】选B、D.
【详解】受迫振动的振幅A随驱动力频率的变化规律如图所示,显然A错, B对.振动稳定时系统的频率等于驱动力的频率,故C错D对.
3.做简谐振动的单摆,在摆动的过程中(  )
A.只有在平衡位置时,回复力才等于重力和细绳拉力的合力
B.只有在最高点时,回复力才等于重力和细绳拉力的合力
C.小球在任意位置处,回复力都等于重力和细绳拉力的合力
D.小球在任意位置处,回复力都不等于重力和细绳拉力的合力
【答案】B
【详解】单摆在一个圆弧上来回运动,摆球做圆周运动的向心力由重力沿悬线方向的分力和悬线拉力的合力提拱,而回复力是指重力沿圆弧切线方向的分力.摆球在平衡位置速度不为零,向心力不为零,而回复力为零,所以合力不是回复力;摆球在最高点时,速度为零,向心力为零,合力等于回复力.故选项B正确.
4.如图所示,位于介质Ⅰ和Ⅱ分界面上的波源S,产生两列分别沿x轴负方向与正方向传播的机械波.若在两种介质中波的频率及传播速度分别为f1、f2和v1、v2,则(  )
A.f1=2f2,v1=v2    B.f1=f2,v1=0.5v2
C.f1=f2,v1=2v2 D.f1=0.5f2,v1=v2
【答案】C
【详解】因为机械波的波速由介质决定,频率由振源决定,所以f1=f2;由图知:32λ1=3λ2=L,得λ1=2λ2,由v=λ?f得v1=2v2,故C正确.
5.图中实线和虚线分别是x轴上传播的一列简谐横波在t=0和t=0.03 s时刻的波形图,x=1.2 m处的质点在t=0.03 s时刻向y轴正方向运动,则(  )
A.该波的频率可能是125 Hz
B.该波的波速可能是10 m/s
C.t=0时x=1.4 m处质点的加速度方向沿y轴正方向
D.各质点在0.03 s内随波迁移0.9 m
【答案】A
【详解】由题可知波向右传播,则0.03=nT+34T,T=0.03n+34,当n=3时,T=0.008 s,f=125 Hz,A选项正确.波速v=λT,λ=1.2 m,代入数据得B选项错误.当t=0时刻,x=1.4 m时,质点加速度方向沿y轴负方向,C选项错误.各质点只是上下振动,不随波迁移,D选项错误.
6.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T.取竖直向上为正方向,以某时刻作为计时起点,即t=0,其振动图象如图所示,则 (  )
A.t=14T时,货物对车厢底板的压力最大
B.t=12T时,货物对车厢底板的压力最小
C.t=34T时,货物对车厢底板的压力最大
D.t=34T时,货物对车厢底板的压力最小
【答案】C
【详解】物体对车厢底板的压力与物体受到的支持力大小相等.当物体的加速度向上时,支持力大于重力;当物体的加速度向下时,支持力小于重力.t=14T时,货物向下的加速度最大,货物对车厢底板的压力最小.t=12T时,货物的加速度为零,货物对车厢底板的压力等于重力大小.t=34T时,货物向上的加速度最大,则货物对车厢底板的压力最大.
7.表1表示某受迫振动的振幅随驱动力频率变化的关系,若该振动系统的固有频率为f固,则(  ).
表1
驱动力频率/Hz304050607080
受迫振动振幅/cm10.216.827.228.116.58.3
A.f固=60 Hz      B.60 HzC.50 Hz【答案】C
【详解】由如图6所示的共振曲线可判断出f驱与f固相差越大,受迫振动的振幅越小,f驱与f固越接近,受迫振动的振幅越大,并从中看出f驱越接近f固,振幅的变化越慢.比较各组数据知f驱在50~60 Hz范围内时,振幅变化最小.因此,50 Hz8.正在运转的机器,当其飞轮以角速度ω0匀速转动时,机器的振动不强烈,切断电源,飞轮的转动逐渐慢下来,在某一小段时间内机器却发生了强烈的振动,此后飞轮转速继续变慢,机器的振动也随之减弱,在机器停下来之后若重新启动机器,使飞轮转动的角速度从0较缓慢地增大到ω0,在这一过程中(  ).
A.机器不一定还会发生强烈的振动
B.机器一定还会发生强烈的振动
C.若机器发生强烈振动,强烈振动可能发生在飞轮角速度为ω0时
D.若机器发生强烈振动,强烈振动时飞轮的角速度肯定不为ω0
【答案】BD
【详解】飞轮在转速逐渐减小的过程中,机器出现强烈的振动,说明发生共振现象,共振现象产生的条件是驱动力频率等于系统的固有频率,故当机器重新启动时,飞轮转速缓慢增大的过程中,一旦达到共振条件,机器一定还会发生强烈的振动.由题意可知,发生强烈共振时,飞轮的角速度一定小于ω0.
9.如图所示,在公路的十字路口东侧路边,甲以速度v1向东行走,在路口北侧,乙站在路边,一辆汽车以速度v2通过路口向东行驶并鸣笛,已知汽车笛声的频率为f0,车速v2>v1.甲听到的笛声的频率为f1,乙听到的笛声的频率为f2,司机自己听到的笛声的频率为f3,则此三人听到笛声的频率由高至低顺序为________.
【答案】f1>f3>f2
【详解】由于v2>v1,所以汽车和甲的相对距离减小,甲听到的频率变大,即f1>f0;由于乙静止不动,则汽车和乙的相对距离增大,乙听到的频率变低,即f2<f0;由于司机和汽车相对静止,所以司机听到的频率不变,即f3=f0.综上所述,三人听到笛声的频率由高至低顺序为f1>f3>f2.
10. (2011?湖北黄冈)如图所示,S1、S2为两个振动情况完全一样的波源,两列波的波长都为λ,它们在介质中产生干涉现象,S1、S2在空间共形成6个振动减弱的区域(图中虚线处),P是振动减弱区域中的一点,从图中可看出 (  )
A.P点到两波源的距离差等于1.5λ
B.两波源之间的距离一定在2.5个波长到3.5个波长之间
C.P点此时刻振动最弱,过半个周期后,振动变为最强
D.当一列波的波峰传到P点时,另一列波的波谷也一定传到P点
【答案】ABD
【详解】从S1、S2的中点起到向右三条虚线上,S1、S2的距离差依次为0.5λ、1.5λ、2.5λ.
11.如图所示,一根柔软的弹性绳子右端固定,左端自由,A、B、C、D……为绳上等间隔的点,点间间隔为50 cm,现用手拉着绳子的端点A使其上下振动,若A点开始向上,经0.1 s第一次达到最大位移,C点恰好开始振动,则
(1)绳子形成的向右传播的横波速度为多大?
(2)从A开始振动,经多长时间J点第一次向下达到最大位移?
(3)画出当J点第一次向下达到最大位移时的波形图象.
【答案】(1)v波=xt=1 m0.1 s=10 m/s.
(2)波由波源传到J需时间t由t1=s′v=4.510 s=0.45 s
波刚传到J时,J也向上起振.到负最大位移需t2时间,
则t2=34T=0.3 s
所以对应总时间t=t1+t2=0.75 s.
(3)波形图如图所示.
12.一列简谐横波在x轴上传播,在t1=0和t2=0.5 s两时刻的波形分别如图中的实线和虚线所示,求:
(1)若周期大于t2-t1,波速多大?
(2)若周期小于t2-t1,则波速又是多少?
(3)若波速为92 m/s,求波的传播方向.
【答案】(1)若波向右传播,波速为4 m/s;若波向左传播,波速为12 m/s
(2)若波向右传播,波速为(4+16n) m/s(n=1,2,3,…)
若波向左传播,波速为(12+16n) m/s(n=1,2,3,…)
(3)向左传播
【详解】(1)若波向右传播,Δx1=2 m,Δt=t2-t1=0.5 s,则v1=Δx1Δt=4 m/s;
若波向左传播,Δx2=6 m,Δt=t2-t1=0.5 s,则v2=Δx2Δt=12 m/s.
(2)若波向右传播,Δx3=(2+8n)m(n=1,2,3,…),Δt=t2-t1=0.5 s,则v3=Δx3Δt=(4+16n) m/s(n=1,2,3,…);
若波向左传播,Δx4=(6+8n) m(n=1,2,3,…),Δt=t2-t1=0.5 s则v4=Δx4Δt=(12+16n) m/s(n=1,2,3,…).
(3)当波速为92 m/s时,波向前传播的距离为Δx=vt=46 m=5+34λ,由(2)题答案可知波向左传播.


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:2012届高考物理第一轮考纲知识复习 电场能的性质的描述
下一篇:2012届高考物理第一轮带电粒子在复合场中的运动复习学案

逍遥右脑在线培训课程推荐

【2012届高考物理第一轮考纲知识复习 机械振动 机械波】相关文章
【2012届高考物理第一轮考纲知识复习 机械振动 机械波】推荐文章