逍遥右脑 2014-01-03 09:05
知识点复习
一、基本概念
1、质点:用来代替物体、只有质量而无形状、体积的点。它是一种理想模型,物体简化为质点的条件是物体的形状、大小在所研究的问题中可以忽略。
2、时刻:表示时间坐标轴上的点即为时刻。例如几秒初,几秒末,几秒时。
时间:前后两时刻之差。时间坐标轴上用线段表示时间,例如,前几秒内、第几秒内。
3、位置:表示空间坐标的点。
位移:由起点指向终点的有向线段,位移是末位置与始位置之差,是矢量。
路程:物体运动轨迹之长,是标量。
注意:位移与路程的区别.
4、速度:描述物体运动快慢和运动方向的物理量,是位移对时间的变化率,是矢量。
平均速度:在变速直线运动中,运动物体的位移和所用时间的比值,v=s/t(方向为位移的方向)
瞬时速度:对应于某一时刻(或某一位置)的速度,方向为物体的运动方向。
速率:瞬时速度的大小即为速率;
平均速率:质点运动的路程与时间的比值,它的大小与相应的平均速度之值可能不相同。
注意:平均速度的大小与平均速率的区别.
【例1】物体M从A运动到B,前半程平均速度为v1,后半程平均速度为v2,那么全程的平均速度是:()
A.(v1+v2)/2B.C.D.
解析:本题考查平均速度的概念。全程的平均速度,故正确答案为D
5、加速度:描述物体速度变化快慢的物理量,a=△v/△t(又叫速度的变化率),是矢量。a的方向只与△v的方向相同(即与合外力方向相同)。
点评1:
(1)加速度与速度没有直接关系:加速度很大,速度可以很小、可以很大、也可以为零(某瞬时);加速度很小,速度可以很小、可以很大、也可以为零(某瞬时)。
(2)加速度与速度的变化量没有直接关系:加速度很大,速度变化量可以很小、也可以很大;加速度很小,速度变化量可以很大、也可以很小。加速度是“变化率”――表示变化的快慢,不表示变化的大小。
点评2:物体是否作加速运动,决定于加速度和速度的方向关系,而与加速度的大小无关。加速度的增大或减小只表示速度变化快慢程度增大或减小,不表示速度增大或减小。
(1)当加速度方向与速度方向相同时,物体作加速运动,速度增大;若加速度增大,速度增大得越来越快;若加速度减小,速度增大得越来越慢(仍然增大)。
(2)当加速度方向与速度方向相反时,物体作减速运动,速度减小;若加速度增大,速度减小得越来越快;若加速度减小,速度减小得越来越慢(仍然减小)。
【例2】一物体做匀变速直线运动,某时刻速度大小为4m/s,经过1s后的速度的大小为10m/s,那么在这1s内,物体的加速度的大小可能为
解析:本题考查速度、加速度的矢量性。经过1s后的速度的大小为10m/s,包括两种可能的情况,一是速度方向和初速度方向仍相同,二是速度方向和初速度方向已经相反。取初速度方向为正方向,则1s后的速度为vt=10m/s或vt=-10m/s
由加速度的定义可得
m/s或m/s。
答案:6m/s或14m/s
点评:对于一条直线上的矢量运算,要注意选取正方向,将矢量运算转化为代数运算。
6、运动的相对性:只有在选定参考系之后才能确定物体是否在运动或作怎样的运动。一般以地面上不动的物体为参照物。
【例3】甲向南走100米的同时 高中政治,乙从同一地点出发向东也行走100米,若以乙为参考系,求甲的位移大小和方向?
解析:如图所示,以乙的矢量末端为起点,向甲的矢量末端作一条有向线段,即为甲相对乙的位移,由图可知,甲相对乙的位移大小为m,方向,南偏西45°。
点评:通过该例可以看出,要准确描述物体的运动,就必须选择参考系,参考系选择不同,物体的运动情况就不同。参考系的选取要以解题方便为原则。在具体题目中,要依据具体情况灵活选取。下面再举一例。
【例4】某人划船逆流而上,当船经过一桥时,船上一小木块掉在河水里,但一直航行至上游某处时此人才发现,便立即返航追赶,当他返航经过1小时追上小木块时,发现小木块距离桥有5400米远,若此人向上和向下航行时船在静水中前进速率相等。试求河水的流速为多大?
解析:选水为参考系,小木块是静止的;相对水,船以恒定不变的速度运动,到船“追上”小木块,船往返运动的时间相等,各为1小时;小桥相对水向上游运动,到船“追上”小木块,小桥向上游运动了位移5400m,时间为2小时。易得水的速度为0。75m/s。
二、匀速直线运动
1.定义:,即在任意相等的时间内物体的位移相等.它是速度为恒矢量的运动,加速度为零的直线运动。
2.图像:匀速直线运动的s-t图像为一直线:图线的斜率在数值上等于物体的速度。1 2 下一页 尾页
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。