排列组合应用题解题技巧

逍遥右脑  2013-11-07 09:09

排列组合问题在实际应用中是非常广泛的,并且在实际中的解题也是比较复杂的,下面就通过一些实例来总结实际应用中的解题技巧。

  1.排列的定义:从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

  2.组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合。

  3.排列数公式:

  4.组合数公式:

  5.排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题。

例1 学校组织一起看电影,同一排电影票12张。8个,4个,要求在中间,且老师互不相邻,共有多少种不同的坐法?

  分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待。所涉及问题是排列问题。

  解 先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法。根据乘法原理,共有的不同坐法为种。

  结论1 插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法。即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可。

  例2 5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?

  分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题。

  解 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有种排法,其中女生内部也有种排法,根据乘法原理,共有种不同的排法。

  结论2 捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题。即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。

  例3 年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?

  分析 高中物理 此题若直接去考虑的话,就会比较复杂。但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解。

  解 此题可以转化为:将12个相同的白球分成8份,有多少种不同的分法问题,因此须把这12个白球排成一排,在11个空档中放上7个相同的黑球,每个空档最多放一个,即可将白球分成8份,显然有种不同的放法,所以名额分配方案有种。



版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。

上一篇:高一新生如何学习数学?
下一篇:高中数学反三角函数的公式小结

逍遥右脑在线培训课程推荐

【排列组合应用题解题技巧】相关文章
【排列组合应用题解题技巧】推荐文章