2015年数学学习计划

逍遥右脑  2015-11-08 09:10

2015年数学学习计划

  数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。

  1、按部就班:数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

  2、强调理解:概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。3、基本训练:学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉考试中的题型,训练要做到有的放矢。

  4、重视平时考试出现的错误:订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。

  考试篇

  攻略一:概念记清,基础夯实。数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是"不定项选择题"就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,要把已经学过的六本教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。

  攻略二:适当做题,巧做为王。有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要"埋下头去做题,抬起头来想题",在做题中关注思路、方法、技巧,要"苦做"更要"巧做".考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。

  攻略三:前后联系,纵横贯通。在做题中要注重发现题与题之间的内在联系,绝不能"傻做".在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到"触类旁通"的境界。特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。

  攻略四:记录错题,避免再犯。俗话说,"一朝被蛇咬,十年怕井绳",可是同学们常会一次又一次地掉入相似甚至相同的"陷阱"里。因此,我建议大家在平时的做题中就要及时记录错题,还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。毕竟,中考当中是"分分必争",一分也失不得。

 

  攻略五:集中兵力,攻下弱点。每个人都有自己的"软肋",如果试题中涉及到你的薄弱环节,一定会成为你的最痛。因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成"瘸腿"。

 

2015年小学数学学习计划

  一、指导思想

  指导思想:以“抓根固本、强化常规,规范发展,提高质量”为工作思路,认真落实学校的整体工作计划精神,加强师生与集体的“融合”,牢牢抓住“质量”这一学校发展的生命线,加强领导班子建设,不断提高教师业务素质与师德水平,不断加强学生养成教育,重点突出以下关键词:(教学、教研)扎扎实实、(学生活动)实实在在、(学生行为)规规矩矩、(校园环境)干干净净。

  二、班级分析

  我们二(1)班共有50名学生,二年级的学生在经过一年的数学学习后,基本知识技能有了很大的提高,对数学学习也有了一定的了解。在动手操作,语言表达等方面有了很大的提高,合作互助了意识也有了明显的增强,但是学生之间存在着明显的差距。优等生思维活跃,发言积极;中等生课堂上几乎是“默默无闻”;后进生学习方法不得当,对每个基础知识掌握的速度总是慢许多。因此,在这一学期的教学中更多关注后进生学生学习兴趣和学习方法的培养上,并使不同的学生得到不同的发展。

  三、个人发展计划:

  根据本人的个性,结合本人优缺点,特制定以下个人成长发展计划:

  1.理论学习方面,认真学习领会新课程,掌握自己所任学科的专业特点,善于思考,养成多思多想多写的习惯,做的最优化要落实到学的最优化,形成自己的教学风格。

  2.认真做好学校各项日常教学常规工作,抓好教学质量,继续培养学生各方面良好习惯的。

  3、勤于反思,在总结经验中完善自我。

  4、基本功方面不间断地练习提高。

  5、积极使用现代信息技术。

  四、具体措施:

  1、专业水平的提高。

  (1)学习教育理论,在理性认识中丰富自我。

  认真阅读《课程标准》《教学用书》等有关资料,钻研新教材,新课标,研究教法,体会新课程的性质、价值、理念,提高自己的业务能力。每学期读一本教育专著,如《青少年心理问题研究》等,及时作好笔记,写出自己的心得,丰富自己的文化素养。多看权威性的教育类期刊杂志,如:《人民教育》、《河北教育》、《中国教育报》、《中小学教育》等,了解更多著名教育专家、行家的观点,了解当前的教改动态,这些对自己今后的教育教学工作都具有指导意义。

  (2)、专业素质的提高,在汲纳中充实自我。

  在一级导师的帮助下,在向老教师学习下,坚持教学相长,获得自我发展。勤听课,通过课堂听课,与授课者进行交流与沟通;勤质疑,勇于提出自己的问题或不同观点,在共同探索中达到共同进步;从中得到真切的感受,不断完善自我,促进个人专业知识的提升,让自己与新课程同成长。

  2、日常教学常规的扎实与提升。

  精心备课;细心批改每一本作业,杜绝错批、漏批现象,探索趣味性作业,创新性作业。要求批语的书写要认真、规范,要及时做好批改记录。有教案、不迟到、不坐着讲课、不提早下课、不拖堂、不挖苦讽刺学生等;尤其要多关注后进生,本学期采用“一帮一”以优带差、小组竞争的方式提高教育教学质量和良好习惯的养成,切实促进后进生各方面能力的提高。

  3、勤于反思,完善自我。学会思考教育问题,积极把先进的教育理念转化为教师的行为等,从反思中提升教学研究水平。每节课后,把自己在教学实践中发现的问题和有价值的东西赶快记下来,享受成功,弥补不足。在总结经验中完善自我。

  4、练就自己扎实的基本功。

  “钢笔字、毛笔字、粉笔字、简笔画、普通话”是教师的基本功。如能写一笔好字,不仅看着潇洒悦目,更能影响可塑性强的学生。简笔画可以使教师板书生动有趣,也会吸引住学生注意力。每周各练习一张钢笔字,不断临摹、揣摩字的写法;师范上学期间有了一定的绘画功底,每天临摹简笔画一张,多向美术老师请教,提高绘画水平。

  5、利用信息技术手段辅助教学。充分利用网络优势,学习教育教学方面的新思想,掌握新方式,运用新理论,提高教学效果。利用课余时间向电脑能手学习,提高自己的计算机水平。

  在今后的工作中我会严格要求自己,争做一名领导省心、家长放心、同事欣赏、学生喜欢的科研型教师。

  四、教材分析

  (一)教学内容

  本学期教材内容包括下面一些内容:100以内的加、减法的笔算,表内乘法(一),表内乘法(二),认识长度单位厘米和米,初步认识角,从不同的位置观察物体和简单的对称现象,简单的数据整理方法和以一当二的条形统计图,数学广角和数学实践活动等。

  (二)教学目标知识和技能方面

  1、掌握100以内笔算加、减法的计算方法,能够正确地进行计算。初步掌握100以内笔算加、减法的估算方法,体会估算方法的多样性。

  2、知道乘法的含义和乘法算式中各部分的名称,熟记全部乘法口诀,熟练地口算两个一位数相乘。

  3、初步认识长度单位厘米和米,初步建立1米、1厘米的长度观念,知道1米=100厘米;初步学会用刻度尺量物体的长度(限整厘米);初步形成估计物体长度的意识。

  4、初步认识线段,会量整厘米线段的长度;初步认识角和直角,知道角的各部分名称,会用三角板判断一个角是不是直角;初步学会画线段、角和直角。5、能辨认从不同的位置观察到的简单物体的形状;初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形;初步认识镜面对称现象。

  6、初步了解统计的意义,体验数据的收集、整理、描述和分析的过程,会用简单的方法收集和整理数据。

  数学思考方面

  1、能运用生活经验,对有关数学信息作出解释,并初步学会用具体的数据描绘现实世界中的简单现象。

  2、初步了解统计的意义,体验数据的收集、整理、描述和分析的过程,会用简单的方法收集和整理数据。初步认识条形统计图(1格表示2个单位)和统计表,能根据统计图表中的数据提出并回答简单的问题。

  3、通过观察、猜测、实验等活动,找出最简单的事物的排列数和组合数,培养学生初步观察、分析及推理的能力,初步形成有顺序地、全面地思考问题的意识。解决问题方面

  1、经历从生活中发现并提出问题、解决问题的过程,体验数学与日常生活的密切联系,感受数学在日常生活中的作用。

  2、了解同一问题可以有不同的解决办法。

  3、有与同学合作解决问题的经验。

  4、初步学会表达解决问题的大致过程和结果。

  情感与态度方面

  1、在他人的鼓励和帮助下,对身边与数学有关的某些事物有好奇心,能积极参与生动、直观的教学活动。

  2、在他人的鼓励和帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心。

  3、经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性。

  4、在他人的指导下,能够发现数学活动中的错误,并及时改正。

  5、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心

  6、养成认真作业、书写整洁的良好习惯。

  7、通过实践活动,体验数学与日常生活的密切联系。

  (三)教学的重点、难点

  教学重点:100以内的加、减法笔算,表内乘法。

  教学难点:100以内的加、减笔算,以及数学实践、数学思维的训练。

  五、教学措施

  1、要从整体上把握教学目标。根据教学指导纲要,结合教学进行适当的调整。要防止加重学生的学习负担。

  2、要尊重学生,注重学法渗透。在学习中,教师不要包办代替和以讲代学,要把课堂中更多的时间留给学生探索、交流和练习。

  3、要注意培养学生的数学概括能力和逻辑思维能力。要重视学生获取知识的思维过程。

  4、要注重培养学生的计算能力和解答应用题的能力,还诮鼓励学生动用所学的知识解答日常生活和学习中的简单实际问题。激发学生的兴趣,培养学以致用的意识。

  5、要注意适当渗透一些数学思想和方法,有利于学生对某些数学内容的理解。

  6、要注意教学的开放性,培养学生的创新意识和实践能力。课本中的一些例题和习题的编排,突出了思考过程,教师在教学时,要引导学生暴露思维过程,鼓励学生多角度思考问题。

  7、要精心设计教案,注重多媒体的应用,使学生学得愉快,学得轻松,觉得扎实。

  8、要渗透德育,注重培养学生良好的学习习惯和独立思考、克服困难的精神。

  

2015年初中数学研究性学习计划

  为适应素质教育的需要,我们参加了初中数学研究性学习课题研究小组,为更好的参加活动,取得一定的成绩,现制定计划如下:

  一.目的要求:

  1.经历把实际问题数学化,即用数学的方式表示问题以及用数学的方法解决问题的过程,发展数学应用的能力,并体会数学与生活的密切联系和数学的应用价值;适应素质教育的需要,培养学生的动手能力,开发他们的智力。

  2.以小组合作交流学习为主,培养学生自主学习和合作交流的能力。

  3.经历查阅资料或实地测量获得所需数据、动手制作模型和撰写研究报告的过程,获得科学研究的体验、培养科学精神。

  4.带领学生根据课本知识做相关的数学小实验,激发学生探究问题,钻研问题的能力。

  5.能够综合运用数学、地理或其它学科的知识解决生活中的问题,发展社会责任感。

  二.实施措施:

  1.以自己所教学生为主要研究对象,利用自己的课堂,实施小组合作交流教学。

  2.在借鉴其他学校的教学方法的同时,开发适合自己学生的新的教学方法。

  3.利用网络的优势,学习先进的教学思想和方法,开发自己的视野,增长自己的知识。

  4.坚持平时反思和阶段反思想结合,随时总结自己研究过程中的不足与优势,作好记录,让自己的研究形成初步规模。

  总之在实施的过程中,要遵循学生的身心发展和思维形成的规律。以学生发展为本,淡化学科体系,开放学习空间,让学生不是在说教中而是在体验中成长,克服简单灌输“大道理”的教学方法。以培养学生的创新精神和实践能力为宗旨,采用启发式,讨论式和研究性学习的方式教学,在重视教学研究的同时要加强对学生的学法的研究,引导学生积极参与教学过程,并注意培养学生的成就感,同时增加课堂教学中组织学生开展辩论、动手、动脑以及观看录象等活动。教师要理顺教学与课程的关系,创设情景,逐渐走向教学与课程的整合,在教学过程中实现师生互动的教学模式,教学相长,促进师生共同发展,形成开放的、学习型的教学运行环境。

  

2015年大学数学学习计划

  学习教材:高等数学上、下册(同济大学数学系编,第六版),线性代数(同济大学数学系编,第五版),概率论与数理统计(浙江大学盛骤编,第四版)

  学习时间:3月份-6月份

  学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容

  学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。

  学习计划:

  一、3月24号上午9:00----11:00

  不定积分

  1.原函数、不定积分的概念;

  2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;

  3.会求有理函数和简单无理函数的积分.

  定积分

  1.定积分的概念和性质,定积分中值定理;

  2.定积分的换元积分法与分部积分法;

  3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;

  4.反常积分的概念与计算;

  5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.

  :本章的基础课后习题

  二、3月31号上午9:00----11:00

  微分方程

  1.微分方程及其阶、解、通解、初始条件和特解等概念;

  2.变量可分离的微分方程及一阶线性微分方程的解法;

  3.齐次微分方程的解法;

  4.线性微分方程解的性质及解的结构;

  5.二阶常系数齐次线性微分方程的解法;

  6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.

  作业:本章的基础课后习题

  三、4月7号上午9:00----11:00

  来总部阶段测评

  四、4月14号上午9:00----11:00

  多元函数微分学

  1.二元函数的概念与几何意义;

  2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;

  3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;

  4.多元复合函数一阶、二阶偏导数的求法;

  5.隐函数存在定理,计算多元隐函数的偏导数;

  6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.

  作业:本章的基础课后习题

  五、4月21号上午9:00----11:00

  重积分

  1.二重积分的概念和性质,二重积分的中值定理;

  2.会利用直角坐标、极坐标计算二重积分.

  级数

  1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;

  2.几何级数与级数的收敛与发散的条件;

  3.正项级数收敛性的比较判别法和比值判别法;

  4.交错级数和莱布尼茨判别法;

  5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;

  6.函数项级数的收敛域及和函数的概念;

  7.幂级数的收敛半径、收敛区间及收敛域的求法;

  8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;

  9.函数展开为泰勒级数的充分必要条件;

  10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.

  作业:本章的基础课后习题

  六、4月28号上午9:00----11:00

  行列式

  1.行列式的概念和性质,行列式按行(列)展开定理.

  2.用行列式的性质和行列式按行(列)展开定理计算行列式.

  3.用克莱姆法则解齐次线性方程组.

  作业:本章的基础课后习题

  对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式

  七、5月5号上午9:00----11:00

  矩阵

  1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.

  2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.

  3.方阵的幂与方阵乘积的行列式的性质.

  4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.

  5.伴随矩阵的概念,用伴随矩阵求逆矩阵.

  6.分块矩阵及其运算

  作业:本章的基础课后习题

  八、5月12号上午9:00----11:00

  总部考试

  九、5月19号上午9:00----11:00

  向量与线性方程组

  1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.

  2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.

  3.非齐次线性方程组解的结构及通解.

  4.用初等行变换求解线性方程组的方法.

  5.维向量、向量的线性组合与线性表示的概念

  6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.

  7.向量组的极大线性无关组和向量组的秩的概念和求解.

  8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系. 

  作业:本章的基础课后习题

  十、5月26号上午9:00----11:00

  矩阵的特征值和特征向量

  1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.

  2.规范正交基、正交矩阵的概念以及它们的性质.

  3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.

  4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.

  5.实对称矩阵的特征值和特征向量的性质.

  作业:本章的基础课后习题

  二次型

  1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.

  2.正交变换化二次型为标准形,配方法化二次型为标准形.

  3.正定二次型、正定矩阵的概念和判别法.

  作业:本章的基础课后习题

  十一、6月2号上午9:00----11:00

  考试

  十二、6月9号上午9:00----11:00

  随机事件和概率

  1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.

  2.概率、条件概率的概念,概率的基本性质.

  3.会计算古典型概率和几何型概率.

  4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.

  5.事件独立性的概念与计算.

  作业:本章的基础课后习题

  随机变量及其分布

  1.随机变量的概念,分布函数的概念及性质.

  2.独立重复试验的概念与有关事件概率的计算.

  3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.

  4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.

  5.随机变量函数的分布.

  作业:本章的基础课后习题

  十三、6月16号上午9:00----11:00

  多维随机变量及分布

  1.多维随机变量的概念,多维随机变量的分布的概念和性质.

  2.二维离散型随机变量的概率分布、边缘分布和条件分布.

  3.二维连续型随机变量的概率密度、边缘密度和条件密度.

  4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.

  5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.

  6.两个随机变量简单函数的分

  作业:本章的基础课后习题

  十四、6月23号上午9:00----11:00

  考试

  十五、6月30号上午9:00----11:00

  随机变量的数字特征

  1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.

  2.会运用数字特征的基本性质,并掌握常用分布的数字特征.

  3.随机变量函数的数学期望.

  4.切比雪夫不等式.

  作业:本章的基础课后习题

  大数定律和中心极限定理

  1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

  2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)

  作业:本章的基础课后习题

  样本及抽样分布

  1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.

  2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.

  3.正态总体的常用抽样分布.

  作业:本章的基础课后习题

  矩估计和最大似然估计

  1.参数的点估计、估计量与估计值的概念.

  2.矩估计法(一阶矩、二阶矩)和最大似然估计法.

  作业:本章的基础课后习题

  7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。

  7月底到8月中旬:暑假强化班

  学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:2016年秋五年级学习部工作计划
下一篇:2015年市政公用事业管理局党委中心组专题学习计划范文

逍遥右脑在线培训课程推荐

【2015年数学学习计划】相关文章
【2015年数学学习计划】推荐文章