高三备考:高考数学五大主要解题思路

逍遥右脑  2015-08-06 15:48

【摘要】:进入秋季,各个高中都已经进入了高三年级一轮复习阶段。一轮复习是高考复习中内容最全面、最细致的一轮,也决定了同学们赖以迎接考试的知识基础是否牢靠。因此,如果希望在高考中取得优异的成绩,一轮复习时需要有良好的方法和复习效果。在此,小编为同学们整理了“高考数学五大解题思路”,希望能对大家所有帮助。

数学知识之间都有着千丝万缕的联系,仅仅想凭着对章节的理解就能得到高分的时代已经远去了。所以考生在解答数学试题时要有正确的思路,才能避免错失分数的机会。以下是高考数学解题五大思路,供大家学习参考。

高考数学解题思想一:函数与方程思想

函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。

高考数学解题思想二:数形结合思想

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

高考数学解题思想三:特殊与一般的思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。

高考数学解题思想四:极限思想解题步骤

极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

高考数学解题思想五:分类讨论思想

我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。

【总结】高考数学五大解题思路就为大家整理到这儿了,希望大家好好复习,备战高考。也希望小编的整理可以帮助到大家。

浏览了本文的读者也浏览了:


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:高考政治经济学常识:经济结构类型
下一篇:2014高考语文第一轮复习:诗词鉴赏

逍遥右脑在线培训课程推荐

【高三备考:高考数学五大主要解题思路】相关文章
【高三备考:高考数学五大主要解题思路】推荐文章