高二数学必修四第三单元重要知识点

逍遥右脑  2018-11-27 20:59

高二数学必修4第三单元重要知识点
  1.正弦、余弦公式的逆向思维
  对于形如cos(α-β)cos(β)-sin(α-β)sin(β)这样的形式,运用逆向思维,化解为:
  cos(α-β)cos(β)-sin(α-β)sin(β)=cos[(α-β)+β]=cos(α)
  2.正切公式的逆向思维。
  比如,由tαn(α+β)=[tαn(α)+tαn(β)] / [1-tαn(α)tαn(β)]
  可得:
  tαn(α)+tαn(β)=tαn(α+β)[1-tαn(α)tαn(β)]
  [1-tαn(α)tαn(β)]=[tαn(α)+tαn(β)]/ tαn(α+β)
  tαn(α)tαn(β)tαn(α+β)=tαn(α+β)-tαn(α)-tαn(β)
  3.二倍角公式的灵活转化
  比如:1+sin2α=sin2(α)+cos2(α)+2sin(α)cos(α)
  =[sin(α)+cos(α)]2
  cos(2α)=2cos2(α)-1=1-2sin2(α)=cos2(α)-sin2(α)=[cos(α)+sin(α)][cos(α)-sin(α)]
  cos2(α)=[1+cos(2α)]/2
  sin2(α)=[1-cos(2α)]/2
  1+cos(α)=2cos2(α/2)
  1-cos(α)=2sin2(α/2)
  sin(2α)/2sin(α)=2sin(α)cos(α)/2sin(α)=cos(α)
  sin(2α)/2cos(α)=2sin(α)cos(α)/2cos(α)=sin(α)
  4.两角和差正弦、余弦公式的相加减、相比。
  比如:
  sin(α+β)=sin(α)cos(β)+cos(α)sin(β)……1
  sin(α-β)=sin(α)cos(β)-cos(α)sin(β)……2
  1式+2式,得到
  sin(α+β)+sin(α-β)=2sin(α)cos(β)
  1式-2式,得到
  sin(α+β)-sin(α-β)=2cos(α)sin(β)
  1式比2式,得到
  sin(α+β)/sin(α-β)=[sin(α)cos(β)+cos(α)sin(β)]/ [sin(α)cos(β)-cos(α)sin(β)]
  =[tαn(α)+tαn(β)] / [tαn(α)-tαn(β)]
  我们来看两道例题,增加印象。
  1.已知cos(α)=1/7,cos(α-β)=13/14,且0<β<α<π/2,求β
  本题中,α-β∈(0,π/2)
  sin(α)=4√3/7 sin(α-β)=3√3/14
  cos(β)=cos[α-(α-β)]=cos(α)cos(α-β)+sin(α)sin(α-β)
  =1/2
  β=π/3
  2.已知3sin2(α)+2sin2(β)=1,3sin(2α)-2sin(2β)=0,且α,β都是锐角。求α+2β
  由3sin2(α)+2sin2(β)=1得到:
  1-2sin2(β)=cos(2β)=3sin2(α)
  由3sin(2α)-2sin(2β)=0得到:
  sin(2β)=3sin(2α)/2
  cos(α+2β)=cos(α)cos(2β)-sin(α)sin(2β)
  =cos(α)3sin2(α)-sin(α)3sin(2α)/2
  =3sin2(α)cos(α)-3cos(α)sin2(α)
  =0
  加之0<α+2β<270o
  α+2β=90o


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:高中数学必修四章目录
下一篇:高二数学下册知识点[1]

逍遥右脑在线培训课程推荐

【高二数学必修四第三单元重要知识点】相关文章
【高二数学必修四第三单元重要知识点】推荐文章